Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages

神经影像学 认知 磁共振成像 人工智能 正电子发射断层摄影术 计算机科学 认知功能衰退 情态动词 深度学习 机器学习 医学 心理学 痴呆 疾病 神经科学 放射科 内科学 化学 高分子化学
作者
Yunbi Liu,Ling Yue,Shifu Xiao,Wei Yang,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102266-102266 被引量:35
标识
DOI:10.1016/j.media.2021.102266
摘要

Accurately assessing clinical progression from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) is crucial for early intervention of pathological cognitive decline. Multi-modal neuroimaging data such as T1-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET), help provide objective and supplementary disease biomarkers for computer-aided diagnosis of MCI. However, there are few studies dedicated to SCD progression prediction since subjects usually lack one or more imaging modalities. Besides, one usually has a limited number (e.g., tens) of SCD subjects, negatively affecting model robustness. To this end, we propose a Joint neuroimage Synthesis and Representation Learning (JSRL) framework for SCD conversion prediction using incomplete multi-modal neuroimages. The JSRL contains two components: 1) a generative adversarial network to synthesize missing images and generate multi-modal features, and 2) a classification network to fuse multi-modal features for SCD conversion prediction. The two components are incorporated into a joint learning framework by sharing the same features, encouraging effective fusion of multi-modal features for accurate prediction. A transfer learning strategy is employed in the proposed framework by leveraging model trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI and fluorodeoxyglucose PET from 863 subjects to both the Chinese Longitudinal Aging Study (CLAS) with only MRI from 76 SCD subjects and the Australian Imaging, Biomarkers and Lifestyle (AIBL) with MRI from 235 subjects. Experimental results suggest that the proposed JSRL yields superior performance in SCD and MCI conversion prediction and cross-database neuroimage synthesis, compared with several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
1秒前
烟花应助巴斯光年采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
DSSD发布了新的文献求助10
1秒前
风清扬发布了新的文献求助10
1秒前
Messi发布了新的文献求助10
2秒前
数值分析发布了新的文献求助10
4秒前
6秒前
7秒前
蛮吉完成签到,获得积分10
8秒前
俭朴的八宝粥完成签到,获得积分10
8秒前
房产中介发布了新的文献求助10
9秒前
积极紫翠完成签到,获得积分10
10秒前
Bystander完成签到 ,获得积分10
11秒前
11秒前
生椰拿铁发布了新的文献求助10
12秒前
安陌煜发布了新的文献求助10
12秒前
慕青应助Nancy2023采纳,获得10
12秒前
完美世界应助Mlxg采纳,获得30
12秒前
小怪完成签到,获得积分10
13秒前
cckyt完成签到,获得积分10
14秒前
anna发布了新的文献求助10
15秒前
15秒前
DrYang发布了新的文献求助10
18秒前
贪玩若蕊发布了新的文献求助10
20秒前
在水一方应助DrYang采纳,获得10
22秒前
两米七发布了新的文献求助20
22秒前
22秒前
科研通AI5应助乐666采纳,获得10
23秒前
爱lx发布了新的文献求助10
24秒前
怕黑的静蕾应助Benliu采纳,获得10
24秒前
大吱吱完成签到,获得积分10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578