Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages

神经影像学 认知 磁共振成像 人工智能 正电子发射断层摄影术 计算机科学 认知功能衰退 情态动词 深度学习 机器学习 医学 心理学 痴呆 疾病 神经科学 放射科 内科学 化学 高分子化学
作者
Yunbi Liu,Ling Yue,Shifu Xiao,Wei Yang,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102266-102266 被引量:35
标识
DOI:10.1016/j.media.2021.102266
摘要

Accurately assessing clinical progression from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) is crucial for early intervention of pathological cognitive decline. Multi-modal neuroimaging data such as T1-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET), help provide objective and supplementary disease biomarkers for computer-aided diagnosis of MCI. However, there are few studies dedicated to SCD progression prediction since subjects usually lack one or more imaging modalities. Besides, one usually has a limited number (e.g., tens) of SCD subjects, negatively affecting model robustness. To this end, we propose a Joint neuroimage Synthesis and Representation Learning (JSRL) framework for SCD conversion prediction using incomplete multi-modal neuroimages. The JSRL contains two components: 1) a generative adversarial network to synthesize missing images and generate multi-modal features, and 2) a classification network to fuse multi-modal features for SCD conversion prediction. The two components are incorporated into a joint learning framework by sharing the same features, encouraging effective fusion of multi-modal features for accurate prediction. A transfer learning strategy is employed in the proposed framework by leveraging model trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI and fluorodeoxyglucose PET from 863 subjects to both the Chinese Longitudinal Aging Study (CLAS) with only MRI from 76 SCD subjects and the Australian Imaging, Biomarkers and Lifestyle (AIBL) with MRI from 235 subjects. Experimental results suggest that the proposed JSRL yields superior performance in SCD and MCI conversion prediction and cross-database neuroimage synthesis, compared with several state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助Zhang采纳,获得10
2秒前
3秒前
4秒前
xu完成签到,获得积分10
4秒前
HD发布了新的文献求助30
6秒前
大气元彤完成签到 ,获得积分10
6秒前
7秒前
九儿发布了新的文献求助10
7秒前
9秒前
赵一发布了新的文献求助10
10秒前
端庄的乐枫完成签到,获得积分10
10秒前
星辰大海应助俄克赛普特采纳,获得200
11秒前
浮游应助Liu采纳,获得10
11秒前
唐唐发布了新的文献求助10
12秒前
Tsuki发布了新的文献求助10
13秒前
科研通AI2S应助蒲云海采纳,获得10
13秒前
上的工人进场完成签到,获得积分10
14秒前
HD完成签到,获得积分10
14秒前
Y神完成签到 ,获得积分10
14秒前
在水一方应助商商上上采纳,获得10
15秒前
暮时完成签到 ,获得积分10
18秒前
18秒前
20秒前
予秋发布了新的文献求助10
20秒前
等乙天发布了新的文献求助10
21秒前
king发布了新的文献求助10
21秒前
hjs完成签到,获得积分10
22秒前
23秒前
23秒前
Verity应助栗子采纳,获得10
25秒前
晏晏完成签到 ,获得积分10
26秒前
佰斯特威应助YUkiii采纳,获得10
27秒前
彬彬完成签到,获得积分10
27秒前
28秒前
商商上上发布了新的文献求助10
28秒前
希望天下0贩的0应助唐唐采纳,获得10
30秒前
健康的妙菱完成签到,获得积分10
31秒前
科研通AI6应助xunzhi采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563404
求助须知:如何正确求助?哪些是违规求助? 4648237
关于积分的说明 14684240
捐赠科研通 4590274
什么是DOI,文献DOI怎么找? 2518398
邀请新用户注册赠送积分活动 1491088
关于科研通互助平台的介绍 1462369