Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages

神经影像学 认知 磁共振成像 人工智能 正电子发射断层摄影术 计算机科学 认知功能衰退 情态动词 深度学习 机器学习 医学 心理学 痴呆 疾病 神经科学 放射科 内科学 化学 高分子化学
作者
Yunbi Liu,Ling Yue,Shifu Xiao,Wei Yang,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102266-102266 被引量:35
标识
DOI:10.1016/j.media.2021.102266
摘要

Accurately assessing clinical progression from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) is crucial for early intervention of pathological cognitive decline. Multi-modal neuroimaging data such as T1-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET), help provide objective and supplementary disease biomarkers for computer-aided diagnosis of MCI. However, there are few studies dedicated to SCD progression prediction since subjects usually lack one or more imaging modalities. Besides, one usually has a limited number (e.g., tens) of SCD subjects, negatively affecting model robustness. To this end, we propose a Joint neuroimage Synthesis and Representation Learning (JSRL) framework for SCD conversion prediction using incomplete multi-modal neuroimages. The JSRL contains two components: 1) a generative adversarial network to synthesize missing images and generate multi-modal features, and 2) a classification network to fuse multi-modal features for SCD conversion prediction. The two components are incorporated into a joint learning framework by sharing the same features, encouraging effective fusion of multi-modal features for accurate prediction. A transfer learning strategy is employed in the proposed framework by leveraging model trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI and fluorodeoxyglucose PET from 863 subjects to both the Chinese Longitudinal Aging Study (CLAS) with only MRI from 76 SCD subjects and the Australian Imaging, Biomarkers and Lifestyle (AIBL) with MRI from 235 subjects. Experimental results suggest that the proposed JSRL yields superior performance in SCD and MCI conversion prediction and cross-database neuroimage synthesis, compared with several state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Annie完成签到,获得积分10
刚刚
2秒前
2秒前
fxz完成签到 ,获得积分10
3秒前
进击的刘淑芬完成签到,获得积分20
3秒前
合适觅荷完成签到 ,获得积分10
3秒前
哒哒哒完成签到 ,获得积分10
4秒前
张永媚完成签到,获得积分10
4秒前
4秒前
4秒前
研友_VZG7GZ应助陈陈好吃呢采纳,获得10
4秒前
5秒前
yht完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
WNL发布了新的文献求助10
7秒前
7秒前
xiaoliu发布了新的文献求助10
7秒前
淡然从雪完成签到,获得积分10
7秒前
fhz发布了新的文献求助10
7秒前
万能图书馆应助huizi采纳,获得10
7秒前
大个应助夏夏采纳,获得10
8秒前
8秒前
Qiyun_chem发布了新的文献求助10
8秒前
晨风韵雨发布了新的文献求助10
9秒前
爆米花应助fhz采纳,获得10
10秒前
善学以致用应助呆呆采纳,获得10
10秒前
科研通AI6应助典雅的俊驰采纳,获得10
11秒前
专注的问寒完成签到,获得积分0
11秒前
11秒前
成就青筠完成签到,获得积分10
11秒前
生酪拿铁完成签到,获得积分20
12秒前
健忘的绾绾关注了科研通微信公众号
12秒前
12秒前
13秒前
13秒前
364739814发布了新的文献求助10
13秒前
可爱的函函应助xiaoruirx采纳,获得10
13秒前
清爽绮烟完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618686
求助须知:如何正确求助?哪些是违规求助? 4703697
关于积分的说明 14923247
捐赠科研通 4758321
什么是DOI,文献DOI怎么找? 2550231
邀请新用户注册赠送积分活动 1513010
关于科研通互助平台的介绍 1474379