亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages

神经影像学 认知 磁共振成像 人工智能 正电子发射断层摄影术 计算机科学 认知功能衰退 情态动词 深度学习 机器学习 医学 心理学 痴呆 疾病 神经科学 放射科 内科学 化学 高分子化学
作者
Yunbi Liu,Ling Yue,Shifu Xiao,Wei Yang,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102266-102266 被引量:35
标识
DOI:10.1016/j.media.2021.102266
摘要

Accurately assessing clinical progression from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) is crucial for early intervention of pathological cognitive decline. Multi-modal neuroimaging data such as T1-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET), help provide objective and supplementary disease biomarkers for computer-aided diagnosis of MCI. However, there are few studies dedicated to SCD progression prediction since subjects usually lack one or more imaging modalities. Besides, one usually has a limited number (e.g., tens) of SCD subjects, negatively affecting model robustness. To this end, we propose a Joint neuroimage Synthesis and Representation Learning (JSRL) framework for SCD conversion prediction using incomplete multi-modal neuroimages. The JSRL contains two components: 1) a generative adversarial network to synthesize missing images and generate multi-modal features, and 2) a classification network to fuse multi-modal features for SCD conversion prediction. The two components are incorporated into a joint learning framework by sharing the same features, encouraging effective fusion of multi-modal features for accurate prediction. A transfer learning strategy is employed in the proposed framework by leveraging model trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI and fluorodeoxyglucose PET from 863 subjects to both the Chinese Longitudinal Aging Study (CLAS) with only MRI from 76 SCD subjects and the Australian Imaging, Biomarkers and Lifestyle (AIBL) with MRI from 235 subjects. Experimental results suggest that the proposed JSRL yields superior performance in SCD and MCI conversion prediction and cross-database neuroimage synthesis, compared with several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
nolan完成签到 ,获得积分10
1分钟前
科目三应助蒙豆儿采纳,获得10
2分钟前
2分钟前
2分钟前
蒙豆儿发布了新的文献求助10
2分钟前
littleboykk完成签到 ,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
2分钟前
华仔应助蒙豆儿采纳,获得10
3分钟前
3分钟前
蒙豆儿发布了新的文献求助10
3分钟前
狂野的雨灵完成签到,获得积分20
3分钟前
FashionBoy应助蒙豆儿采纳,获得10
4分钟前
4分钟前
科研通AI5应助马良采纳,获得10
4分钟前
4分钟前
4分钟前
蒙豆儿发布了新的文献求助10
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
4分钟前
马良发布了新的文献求助10
5分钟前
5分钟前
5分钟前
h0jian09完成签到,获得积分10
5分钟前
6分钟前
6分钟前
88C真是太神奇啦完成签到,获得积分10
6分钟前
Ava应助科研通管家采纳,获得10
6分钟前
蒙豆儿发布了新的文献求助10
6分钟前
科研通AI2S应助蒙豆儿采纳,获得10
6分钟前
8分钟前
tabblk完成签到 ,获得积分10
8分钟前
星辰大海应助tabblk采纳,获得10
8分钟前
CRUSADER完成签到,获得积分10
9分钟前
9分钟前
tabblk发布了新的文献求助10
9分钟前
柴子完成签到,获得积分10
9分钟前
Virtual应助科研通管家采纳,获得20
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582230
求助须知:如何正确求助?哪些是违规求助? 4000003
关于积分的说明 12381980
捐赠科研通 3674886
什么是DOI,文献DOI怎么找? 2025434
邀请新用户注册赠送积分活动 1059192
科研通“疑难数据库(出版商)”最低求助积分说明 945820