Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages

神经影像学 认知 磁共振成像 人工智能 正电子发射断层摄影术 计算机科学 认知功能衰退 情态动词 深度学习 机器学习 医学 心理学 痴呆 疾病 神经科学 放射科 内科学 化学 高分子化学
作者
Yunbi Liu,Ling Yue,Shifu Xiao,Wei Yang,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102266-102266 被引量:35
标识
DOI:10.1016/j.media.2021.102266
摘要

Accurately assessing clinical progression from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) is crucial for early intervention of pathological cognitive decline. Multi-modal neuroimaging data such as T1-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET), help provide objective and supplementary disease biomarkers for computer-aided diagnosis of MCI. However, there are few studies dedicated to SCD progression prediction since subjects usually lack one or more imaging modalities. Besides, one usually has a limited number (e.g., tens) of SCD subjects, negatively affecting model robustness. To this end, we propose a Joint neuroimage Synthesis and Representation Learning (JSRL) framework for SCD conversion prediction using incomplete multi-modal neuroimages. The JSRL contains two components: 1) a generative adversarial network to synthesize missing images and generate multi-modal features, and 2) a classification network to fuse multi-modal features for SCD conversion prediction. The two components are incorporated into a joint learning framework by sharing the same features, encouraging effective fusion of multi-modal features for accurate prediction. A transfer learning strategy is employed in the proposed framework by leveraging model trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI and fluorodeoxyglucose PET from 863 subjects to both the Chinese Longitudinal Aging Study (CLAS) with only MRI from 76 SCD subjects and the Australian Imaging, Biomarkers and Lifestyle (AIBL) with MRI from 235 subjects. Experimental results suggest that the proposed JSRL yields superior performance in SCD and MCI conversion prediction and cross-database neuroimage synthesis, compared with several state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫的铅笔完成签到,获得积分10
刚刚
CC关闭了CC文献求助
1秒前
大智若愚骨头完成签到,获得积分10
1秒前
2秒前
Sjingjia完成签到,获得积分10
2秒前
香蕉书兰发布了新的文献求助10
3秒前
3秒前
搜集达人应助体贴代容采纳,获得10
3秒前
小二郎应助冷傲幻香采纳,获得10
3秒前
清脆安南发布了新的文献求助10
4秒前
朔月发布了新的文献求助10
5秒前
musejie发布了新的文献求助10
6秒前
6秒前
cc应助姚克婷采纳,获得10
7秒前
顾矜应助141采纳,获得10
7秒前
田様应助hhh采纳,获得10
8秒前
8秒前
大太阳完成签到,获得积分10
8秒前
木头人应助jzyy采纳,获得10
8秒前
JamesPei应助爱学习的小张采纳,获得10
9秒前
杨莹发布了新的文献求助10
9秒前
10秒前
10秒前
深情安青应助霸气的南晴采纳,获得10
10秒前
10秒前
Orange应助qinggui127采纳,获得50
10秒前
10秒前
11秒前
11秒前
TGM_Hedwig完成签到,获得积分10
11秒前
FIGMA发布了新的文献求助10
13秒前
XXXX完成签到 ,获得积分10
13秒前
13秒前
fusucheng完成签到,获得积分10
13秒前
鲜艳的亦玉完成签到,获得积分20
13秒前
14秒前
健忘幻波发布了新的文献求助10
14秒前
FB发布了新的文献求助10
14秒前
14秒前
LYZSh发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684190
求助须知:如何正确求助?哪些是违规求助? 5035564
关于积分的说明 15183757
捐赠科研通 4843529
什么是DOI,文献DOI怎么找? 2596718
邀请新用户注册赠送积分活动 1549418
关于科研通互助平台的介绍 1507952