亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages

神经影像学 认知 磁共振成像 人工智能 正电子发射断层摄影术 计算机科学 认知功能衰退 情态动词 深度学习 机器学习 医学 心理学 痴呆 疾病 神经科学 放射科 内科学 化学 高分子化学
作者
Yunbi Liu,Ling Yue,Shifu Xiao,Wei Yang,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102266-102266 被引量:35
标识
DOI:10.1016/j.media.2021.102266
摘要

Accurately assessing clinical progression from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) is crucial for early intervention of pathological cognitive decline. Multi-modal neuroimaging data such as T1-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET), help provide objective and supplementary disease biomarkers for computer-aided diagnosis of MCI. However, there are few studies dedicated to SCD progression prediction since subjects usually lack one or more imaging modalities. Besides, one usually has a limited number (e.g., tens) of SCD subjects, negatively affecting model robustness. To this end, we propose a Joint neuroimage Synthesis and Representation Learning (JSRL) framework for SCD conversion prediction using incomplete multi-modal neuroimages. The JSRL contains two components: 1) a generative adversarial network to synthesize missing images and generate multi-modal features, and 2) a classification network to fuse multi-modal features for SCD conversion prediction. The two components are incorporated into a joint learning framework by sharing the same features, encouraging effective fusion of multi-modal features for accurate prediction. A transfer learning strategy is employed in the proposed framework by leveraging model trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI and fluorodeoxyglucose PET from 863 subjects to both the Chinese Longitudinal Aging Study (CLAS) with only MRI from 76 SCD subjects and the Australian Imaging, Biomarkers and Lifestyle (AIBL) with MRI from 235 subjects. Experimental results suggest that the proposed JSRL yields superior performance in SCD and MCI conversion prediction and cross-database neuroimage synthesis, compared with several state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
好了没了完成签到,获得积分10
2秒前
挚智完成签到 ,获得积分10
4秒前
4秒前
好了没了发布了新的文献求助10
5秒前
lele完成签到,获得积分10
5秒前
迷路世立完成签到,获得积分10
6秒前
8秒前
FashionBoy应助vinss66home采纳,获得10
9秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
10秒前
遇晚完成签到,获得积分10
17秒前
肥牛完成签到,获得积分10
18秒前
21秒前
解你所忧完成签到 ,获得积分10
22秒前
SciGPT应助浅呀呀呀采纳,获得10
24秒前
ZepHyR发布了新的文献求助10
26秒前
30秒前
李义志发布了新的文献求助10
36秒前
魁梧的衫完成签到 ,获得积分10
36秒前
37秒前
39秒前
LingC完成签到,获得积分10
39秒前
41秒前
44秒前
浅呀呀呀发布了新的文献求助10
44秒前
XueXiTong完成签到,获得积分10
46秒前
Swear完成签到 ,获得积分10
47秒前
49秒前
852应助lzq采纳,获得10
50秒前
雪生在无人荒野完成签到,获得积分10
50秒前
doctor_quyi完成签到,获得积分10
50秒前
52秒前
爆米花应助xinxin采纳,获得10
52秒前
gjn发布了新的文献求助10
55秒前
55秒前
57秒前
57秒前
57秒前
vinss66home发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264