Ensemble Entropy Metric for Hyperspectral Anomaly Detection

异常检测 高光谱成像 像素 熵(时间箭头) 模式识别(心理学) 计算机科学 人工智能 假警报 聚类分析 恒虚警率 Kullback-Leibler散度 公制(单位) 数据挖掘 数学 物理 经济 量子力学 运营管理
作者
Bing Tu,Xianchang Yang,Xianfeng Ou,Guoyun Zhang,Jun Li,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:21
标识
DOI:10.1109/tgrs.2021.3116681
摘要

In hyperspectral anomaly detection, anomalies are rare targets that exhibit distinct spectral signatures from the background. Thus, anomalies are with low probabilities of occurrence in hyperspectral images. In this article, we develop a new technique for hyperspectral anomaly detection that adopts a new information theory perspective, to fully utilize the aforementioned concepts. Our goal is to transform system entropy into quantitative metrics of anomaly conspicuousness of pixels. To do so, two tasks are first completed: first, the construction of occurrence probability of pixels based on the density peak clustering algorithm, and second, the valid system definitions for pixels in specific anomaly detection problems with multiviews. Specifically, three types of systems are separately established by pixel pairs to conform to the definitions of three entropy definitions in information theory, i.e., Shannon entropy, joint entropy, and relative entropy. Then, three individual entropy-based metrics that assess the anomaly conspicuousness are defined. In addition, we design a standard deviation-based ensemble strategy for the integrated representation of the three individual metrics, which considers both logic "OR" and "AND" operations to simultaneously improve the detection rate and reduce the false alarm rate. Our experimental results obtained on two publicly available datasets with anomalies of different sizes and shapes demonstrate the superiority of our newly proposed anomaly detection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术蠕虫发布了新的文献求助10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
sutharsons应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
XShu发布了新的文献求助10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得30
2秒前
传奇3应助科研通管家采纳,获得30
2秒前
Owen应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
文艺明杰发布了新的文献求助100
4秒前
所所应助嘟嘟采纳,获得10
4秒前
6秒前
HMZ完成签到,获得积分10
6秒前
研友_LkYKJZ完成签到,获得积分10
6秒前
田様应助Khr1stINK采纳,获得10
6秒前
6秒前
风趣夜云完成签到,获得积分10
7秒前
7秒前
真实的一鸣完成签到,获得积分10
7秒前
调研昵称发布了新的文献求助50
8秒前
9秒前
yKkkkkk发布了新的文献求助10
9秒前
怎么可能会凉完成签到 ,获得积分10
10秒前
12秒前
12秒前
大大完成签到,获得积分10
13秒前
13秒前
13秒前
Xiaoxiao应助greenPASS666采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808