计算机科学
群体行为
最大值和最小值
稳健性(进化)
避碰
异步通信
避障
弹道
运动规划
障碍物
人工智能
控制理论(社会学)
机器人
分布式计算
碰撞
移动机器人
多智能体系统
数学
数学分析
计算机网络
生物化学
化学
物理
计算机安全
控制(管理)
天文
政治学
法学
基因
作者
Xin Zhou,Jiangchao Zhu,Hongyu Zhou,Chao Xu,Fei Gao
出处
期刊:International Conference on Robotics and Automation
日期:2021-05-30
被引量:75
标识
DOI:10.1109/icra48506.2021.9561902
摘要
This paper presents a decentralized and asynchronous systematic solution for multi-robot autonomous navigation in unknown obstacle-rich scenes using merely onboard resources. The planning system is formulated under gradient-based local planning framework, where collision avoidance is achieved by formulating the collision risk as a penalty of a nonlinear optimization problem. In order to improve robustness and escape local minima, we incorporate a lightweight topological trajectory generation method. Then agents generate safe, smooth, and dynamically feasible trajectories in only several milliseconds using an unreliable trajectory sharing network. Relative localization drift among agents is corrected by using agent detection in depth images. Our method is demonstrated in both simulation and real-world experiments. The source code is released for the reference of the community.
科研通智能强力驱动
Strongly Powered by AbleSci AI