材料科学
单层
杰纳斯
凝聚态物理
带隙
半导体
极限抗拉强度
直接和间接带隙
纳米技术
复合材料
光电子学
物理
作者
Xiao-Shu Guo,San‐Dong Guo
出处
期刊:Journal of Semiconductors
[IOP Publishing]
日期:2021-12-01
卷期号:42 (12): 122002-122002
被引量:10
标识
DOI:10.1088/1674-4926/42/12/122002
摘要
Abstract A two-dimensional (2D) MA 2 Z 4 family with and phases has been attracting tremendous interest, the MoSi 2 N 4 and WSi 2 N 4 of which have been successfully fabricated ( Science 369, 670 (2020) ). Janus monolayers have been achieved in many 2D families, so it is interesting to construct a Janus monolayer from the MA 2 Z 4 family. In this work, Janus MSiGeN 4 (M = Zr and Hf) monolayers are predicted from -MA 2 Z 4 , which exhibit dynamic, mechanical and thermal stabilities. It is found that they are indirect band-gap semiconductors by using generalized gradient approximation (GGA) plus spin-orbit coupling (SOC). With biaxial strain from 0.90 to 1.10, the energy band gap shows a nonmonotonic behavior due to a change of conduction band minimum (CBM). A semiconductor to metal transition can be induced by both compressive and tensile strains, and the phase transformation point is about 0.96 for compressive strain and 1.10 for tensile strain. The tensile strain can change the positions of CBM and valence band maximum (VBM), and can also induce the weak Rashba-type spin splitting near CBM. For MSiGeN 4 (M = Zr and Hf) monolayers, both an in-plane and out-of-plane piezoelectric response can be produced, when a uniaxial strain in the basal plane is applied, which reveals the potential as piezoelectric 2D materials. The high absorption coefficients in the visible light region suggest that MSiGeN 4 (M = Zr and Hf) monolayers have potential photocatalytic applications. Our works provide an idea to achieve a Janus structure from the MA 2 Z 4 family, and can hopefully inspire further research exploring Janus MA 2 Z 4 monolayers.
科研通智能强力驱动
Strongly Powered by AbleSci AI