Cellulose synthase‐like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance

细胞壁 脱落酸 生物 生物合成 渗透性休克 渗透压 突变体 转录组 生物化学 细胞生物学 植物 基因表达 基因
作者
Hui Zhao,Zixuan Li,Ya‐Yun Wang,Jiayi Wang,Minggang Xiao,Liu Hai,Ruidang Quan,Haiwen Zhang,Rongfeng Huang,Li Zhu,Zhijin Zhang
出处
期刊:Plant Biotechnology Journal [Wiley]
卷期号:20 (3): 468-484 被引量:52
标识
DOI:10.1111/pbi.13729
摘要

Cell wall polysaccharide biosynthesis enzymes play important roles in plant growth, development and stress responses. The functions of cell wall polysaccharide synthesis enzymes in plant growth and development have been well studied. In contrast, their roles in plant responses to environmental stress are poorly understood. Previous studies have demonstrated that the rice cell wall cellulose synthase-like D4 protein (OsCSLD4) is involved in cell wall polysaccharide synthesis and is important for rice growth and development. This study demonstrated that the OsCSLD4 function-disrupted mutant nd1 was sensitive to salt stress, but insensitive to abscisic acid (ABA). The expression of some ABA synthesis and response genes was repressed in nd1 under both normal and salt stress conditions. Exogenous ABA can restore nd1-impaired salt stress tolerance. Moreover, overexpression of OsCSLD4 can enhance rice ABA synthesis gene expression, increase ABA content and improve rice salt tolerance, thus implying that OsCSLD4-regulated rice salt stress tolerance is mediated by ABA synthesis. Additionally, nd1 decreased rice tolerance to osmotic stress, but not ion toxic tolerance. The results from the transcriptome analysis showed that more osmotic stress-responsive genes were impaired in nd1 than salt stress-responsive genes, thus indicating that OsCSLD4 is involved in rice salt stress response through an ABA-induced osmotic response pathway. Intriguingly, the disruption of OsCSLD4 function decreased grain width and weight, while overexpression of OsCSLD4 increased grain width and weight. Taken together, this study demonstrates a novel plant salt stress adaptation mechanism by which crops can coordinate salt stress tolerance and yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vsdv完成签到,获得积分10
2秒前
2秒前
嘎嘎嘎发布了新的文献求助10
4秒前
5秒前
搬砖工人完成签到,获得积分10
5秒前
kk应助林读书采纳,获得10
7秒前
7秒前
LLC发布了新的文献求助10
7秒前
8秒前
9秒前
一程发布了新的文献求助10
10秒前
北冥鱼完成签到,获得积分10
10秒前
..完成签到,获得积分20
12秒前
13秒前
15秒前
LLC完成签到,获得积分10
16秒前
17秒前
淡定成风完成签到,获得积分10
17秒前
赘婿应助zxy采纳,获得10
17秒前
Ali应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
19秒前
jyy应助科研通管家采纳,获得50
19秒前
烟花应助科研通管家采纳,获得20
19秒前
Ali应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
菠菜应助科研通管家采纳,获得100
19秒前
22秒前
诸葛十八子完成签到,获得积分10
22秒前
Owen应助MJX采纳,获得30
24秒前
Yzh完成签到,获得积分10
25秒前
科研人完成签到 ,获得积分10
25秒前
Tink完成签到,获得积分10
25秒前
和谐诗双发布了新的文献求助10
27秒前
黄寒聪发布了新的文献求助10
29秒前
天天快乐应助masterwill采纳,获得10
29秒前
30秒前
米玉米完成签到,获得积分10
32秒前
徐徐完成签到,获得积分10
33秒前
Antigen完成签到,获得积分10
35秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998722
求助须知:如何正确求助?哪些是违规求助? 2659143
关于积分的说明 7199473
捐赠科研通 2294786
什么是DOI,文献DOI怎么找? 1216819
科研通“疑难数据库(出版商)”最低求助积分说明 593628
版权声明 592904