材料科学
消声室
压电
消散
宽带
流体静力平衡
低频
阻带
声学
电阻抗
频带
有限元法
静水压力
带宽(计算)
光学
物理
机械
谐振器
光电子学
计算机科学
电信
热力学
量子力学
天文
作者
Zhifu Zhang,Shande Li,Jiaxuan Wang,Qibai Huang
标识
DOI:10.1016/j.rinp.2021.104879
摘要
Considering the influence of hydrostatic pressure on geometric parameters of a lining, this paper first proposes a complete global four-terminal acoustic theoretical prediction method based on phenomenological theory for a semi-active composite coating with subwavelength piezoelectric arrays in deep-sea environment, aiming at exploring the energy dissipation mechanisms and broadening the low-frequency sound-absorbing bandwidth. The Neo-Hookean material model is incorporated into the phenomenological theory to analyze the finite deformation of rubber layers under hydrostatic load. Then, the global acoustic model is established by combining the effective medium method, shunt damping technique, and wave propagation theory in layered media. Moreover, the degraded validations are developed by FE simulation and hydroacoustic impedance tube experiment, and the influences of submergence depth and shunt circuit on the absorption characteristics are explored theoretically. It is expected to break the lower limit frequency of low-frequency sound-absorbing from 500 Hz to 200 Hz, and to expand the upper limit frequency thanks to the multi-modal resonant energy consumption mechanism of distributed circuits.
科研通智能强力驱动
Strongly Powered by AbleSci AI