Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning

电子鼻 计算机科学 人工智能 卷积神经网络 一般化 任务(项目管理) 模式识别(心理学) 人工神经网络 深度学习 机器学习 比例(比率) 试验数据 特征(语言学) 块(置换群论) 工程类 数学分析 哲学 物理 量子力学 语言学 程序设计语言 系统工程 数学 几何学
作者
Tao Wang,Hexin Zhang,Yu Wu,Wenkai Jiang,Xinwei Chen,Min Zeng,Jianhua Yang,Yanjie Su,Nantao Hu,Zhi Yang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:351: 130915-130915 被引量:90
标识
DOI:10.1016/j.snb.2021.130915
摘要

Pattern recognition is the core component of the electronic nose (E-nose). Traditional machine learning algorithms highly rely on the feature data selected manually for model training and testing. A complete experiment must be performed before the data can be further processed. To realize the automatic extraction of response features and simplify the model’s training and application process, a multi-task convolutional neural network (MTL-CNN) with a dual-block knowledge-sharing structure is designed to train a model for the E-nose system. This model can simultaneously perform three different classification tasks, for the purposes of target discrimination, concentration prediction, and state judgment. Only a few consecutive seconds of response data are needed to be input into the trained model to obtain various information about the E-nose. With the utilization of an unmanned gas-sensing test system, large-scale measurements of the E-nose can be carried out automatically. A baseline tracking algorithm (BTA) is designed based on the relative changes of short-term data, reducing the impact of long-term shifts. Over thousands of gas response processes and more than 10 million sensing data have participated in the training of the deep learning model. The 5-fold cross-validation method shows that the fully trained model has an outstanding generalization performance. After the baseline is tracked automatically, the accuracy of three tasks towards 12 kinds of volatile organic compounds (VOCs) is about 95% (type recognition: 95.2%, concentration prediction: 92.1%, status judgment: 97.3%) using only 4 s of sensing data during the response status of the E-nose. Our work shows the distinct advantages of combining “big data” and “deep learning” in the gas-sensing field and further proves that the employment of MTL-CNN can significantly improve the training and application efficiency of the E-nose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee发布了新的文献求助10
1秒前
高大的未来完成签到 ,获得积分10
1秒前
可爱的函函应助obito采纳,获得10
2秒前
GuMingyang完成签到,获得积分10
4秒前
NKTreg完成签到,获得积分10
5秒前
5秒前
小鹅完成签到,获得积分10
5秒前
shhoing应助哒哒哒采纳,获得10
5秒前
薯条精完成签到 ,获得积分10
8秒前
西方印迹大王完成签到 ,获得积分10
9秒前
乐乐应助觉主采纳,获得10
10秒前
10秒前
您的好友完成签到,获得积分10
11秒前
12秒前
nagaaa完成签到,获得积分10
14秒前
14秒前
16秒前
李问问发布了新的文献求助10
16秒前
17秒前
obito发布了新的文献求助10
17秒前
18秒前
Li发布了新的文献求助10
20秒前
liujingbin发布了新的文献求助10
20秒前
PaoPao发布了新的文献求助10
23秒前
FFF完成签到,获得积分10
24秒前
daguan完成签到,获得积分10
25秒前
李健的粉丝团团长应助Elsa采纳,获得10
25秒前
无私的蛋挞完成签到,获得积分10
26秒前
hhh完成签到,获得积分10
27秒前
高晗完成签到,获得积分10
28秒前
充电宝应助wujiwuhui采纳,获得10
30秒前
31秒前
31秒前
31秒前
31秒前
32秒前
鲤鱼夏完成签到,获得积分10
32秒前
割牙龈肉完成签到,获得积分20
32秒前
Akim应助历史真相采纳,获得10
32秒前
dilli完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866