Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning

电子鼻 计算机科学 人工智能 卷积神经网络 一般化 任务(项目管理) 模式识别(心理学) 人工神经网络 深度学习 机器学习 比例(比率) 试验数据 特征(语言学) 块(置换群论) 工程类 数学分析 哲学 物理 量子力学 语言学 程序设计语言 系统工程 数学 几何学
作者
Tao Wang,Hexin Zhang,Yu Wu,Wenkai Jiang,Xinwei Chen,Min Zeng,Jianhua Yang,Yanjie Su,Nantao Hu,Zhi Yang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:351: 130915-130915 被引量:90
标识
DOI:10.1016/j.snb.2021.130915
摘要

Pattern recognition is the core component of the electronic nose (E-nose). Traditional machine learning algorithms highly rely on the feature data selected manually for model training and testing. A complete experiment must be performed before the data can be further processed. To realize the automatic extraction of response features and simplify the model’s training and application process, a multi-task convolutional neural network (MTL-CNN) with a dual-block knowledge-sharing structure is designed to train a model for the E-nose system. This model can simultaneously perform three different classification tasks, for the purposes of target discrimination, concentration prediction, and state judgment. Only a few consecutive seconds of response data are needed to be input into the trained model to obtain various information about the E-nose. With the utilization of an unmanned gas-sensing test system, large-scale measurements of the E-nose can be carried out automatically. A baseline tracking algorithm (BTA) is designed based on the relative changes of short-term data, reducing the impact of long-term shifts. Over thousands of gas response processes and more than 10 million sensing data have participated in the training of the deep learning model. The 5-fold cross-validation method shows that the fully trained model has an outstanding generalization performance. After the baseline is tracked automatically, the accuracy of three tasks towards 12 kinds of volatile organic compounds (VOCs) is about 95% (type recognition: 95.2%, concentration prediction: 92.1%, status judgment: 97.3%) using only 4 s of sensing data during the response status of the E-nose. Our work shows the distinct advantages of combining “big data” and “deep learning” in the gas-sensing field and further proves that the employment of MTL-CNN can significantly improve the training and application efficiency of the E-nose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
慕青应助柒tt采纳,获得10
1秒前
善学以致用应助鹿梦采纳,获得10
1秒前
落寞的沛春完成签到,获得积分10
1秒前
2秒前
didi完成签到,获得积分10
2秒前
三人行完成签到,获得积分10
2秒前
KeldonHuang完成签到,获得积分10
2秒前
2秒前
Morris完成签到,获得积分10
2秒前
2秒前
Dgr完成签到,获得积分10
2秒前
3秒前
小二郎应助小5采纳,获得10
3秒前
传奇3应助chaofan采纳,获得10
3秒前
4秒前
粗暴的背包完成签到,获得积分10
4秒前
4秒前
从容白羊完成签到,获得积分10
4秒前
东方元语应助张哈哈采纳,获得20
4秒前
虚心求学完成签到,获得积分10
4秒前
4秒前
小邹完成签到,获得积分10
5秒前
慕青应助朴素浩然采纳,获得10
5秒前
平淡沛蓝完成签到 ,获得积分10
5秒前
桐桐应助芷莯采纳,获得10
6秒前
杨子航发布了新的文献求助10
6秒前
杨昌琪发布了新的文献求助10
6秒前
虎桔发布了新的文献求助10
6秒前
Zhangxinhao发布了新的文献求助10
7秒前
今后应助韩明轩采纳,获得10
7秒前
我来文献求助了完成签到,获得积分10
7秒前
欢呼的丁真完成签到,获得积分10
7秒前
迟梦琪发布了新的文献求助10
7秒前
不安的采白完成签到,获得积分10
7秒前
汉堡包应助阿修罗采纳,获得10
7秒前
7秒前
深海渔完成签到,获得积分20
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246