Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning

电子鼻 计算机科学 人工智能 卷积神经网络 一般化 任务(项目管理) 模式识别(心理学) 人工神经网络 深度学习 机器学习 比例(比率) 试验数据 特征(语言学) 块(置换群论) 工程类 数学分析 哲学 物理 量子力学 语言学 程序设计语言 系统工程 数学 几何学
作者
Tao Wang,Hexin Zhang,Yu Wu,Wenkai Jiang,Xinwei Chen,Min Zeng,Jianhua Yang,Yanjie Su,Nantao Hu,Zhi Yang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:351: 130915-130915 被引量:90
标识
DOI:10.1016/j.snb.2021.130915
摘要

Pattern recognition is the core component of the electronic nose (E-nose). Traditional machine learning algorithms highly rely on the feature data selected manually for model training and testing. A complete experiment must be performed before the data can be further processed. To realize the automatic extraction of response features and simplify the model’s training and application process, a multi-task convolutional neural network (MTL-CNN) with a dual-block knowledge-sharing structure is designed to train a model for the E-nose system. This model can simultaneously perform three different classification tasks, for the purposes of target discrimination, concentration prediction, and state judgment. Only a few consecutive seconds of response data are needed to be input into the trained model to obtain various information about the E-nose. With the utilization of an unmanned gas-sensing test system, large-scale measurements of the E-nose can be carried out automatically. A baseline tracking algorithm (BTA) is designed based on the relative changes of short-term data, reducing the impact of long-term shifts. Over thousands of gas response processes and more than 10 million sensing data have participated in the training of the deep learning model. The 5-fold cross-validation method shows that the fully trained model has an outstanding generalization performance. After the baseline is tracked automatically, the accuracy of three tasks towards 12 kinds of volatile organic compounds (VOCs) is about 95% (type recognition: 95.2%, concentration prediction: 92.1%, status judgment: 97.3%) using only 4 s of sensing data during the response status of the E-nose. Our work shows the distinct advantages of combining “big data” and “deep learning” in the gas-sensing field and further proves that the employment of MTL-CNN can significantly improve the training and application efficiency of the E-nose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到,获得积分10
刚刚
大方百招完成签到,获得积分10
刚刚
闫鹤文完成签到,获得积分10
2秒前
Lemon发布了新的文献求助10
3秒前
hehuan0520完成签到,获得积分10
3秒前
蛋妮完成签到 ,获得积分10
4秒前
Simon完成签到,获得积分10
7秒前
281911480完成签到,获得积分10
10秒前
11秒前
Sophie完成签到,获得积分10
13秒前
如星完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
时尚的康乃馨完成签到 ,获得积分10
16秒前
March3完成签到 ,获得积分10
16秒前
17秒前
FashionBoy应助Sophie采纳,获得10
17秒前
1a完成签到 ,获得积分10
18秒前
Jenny发布了新的文献求助30
20秒前
甘宜完成签到,获得积分10
22秒前
卓若之完成签到 ,获得积分10
22秒前
Lemon完成签到,获得积分20
24秒前
yangz10完成签到 ,获得积分10
25秒前
忧伤的二锅头完成签到 ,获得积分10
25秒前
壮观的谷冬完成签到 ,获得积分0
25秒前
arizaki7应助闫鹤文采纳,获得10
26秒前
李李05完成签到,获得积分10
28秒前
吴家豪完成签到,获得积分10
29秒前
不吃香菜完成签到,获得积分10
34秒前
36秒前
cwanglh完成签到 ,获得积分10
36秒前
shouz完成签到,获得积分10
38秒前
欢喜的元枫完成签到 ,获得积分10
40秒前
一一一应助sandy采纳,获得10
41秒前
顾矜应助书颜采纳,获得10
42秒前
爆米花应助猪猪hero采纳,获得20
44秒前
bear完成签到,获得积分10
46秒前
仁爱的伯云完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
51秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539257
求助须知:如何正确求助?哪些是违规求助? 4625999
关于积分的说明 14597371
捐赠科研通 4566854
什么是DOI,文献DOI怎么找? 2503668
邀请新用户注册赠送积分活动 1481567
关于科研通互助平台的介绍 1453146