Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning

电子鼻 计算机科学 人工智能 卷积神经网络 一般化 任务(项目管理) 模式识别(心理学) 人工神经网络 深度学习 机器学习 比例(比率) 试验数据 特征(语言学) 块(置换群论) 工程类 数学分析 哲学 物理 量子力学 语言学 程序设计语言 系统工程 数学 几何学
作者
Tao Wang,Hexin Zhang,Yu Wu,Wenkai Jiang,Xinwei Chen,Min Zeng,Jianhua Yang,Yanjie Su,Nantao Hu,Zhi Yang
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:351: 130915-130915 被引量:80
标识
DOI:10.1016/j.snb.2021.130915
摘要

Pattern recognition is the core component of the electronic nose (E-nose). Traditional machine learning algorithms highly rely on the feature data selected manually for model training and testing. A complete experiment must be performed before the data can be further processed. To realize the automatic extraction of response features and simplify the model’s training and application process, a multi-task convolutional neural network (MTL-CNN) with a dual-block knowledge-sharing structure is designed to train a model for the E-nose system. This model can simultaneously perform three different classification tasks, for the purposes of target discrimination, concentration prediction, and state judgment. Only a few consecutive seconds of response data are needed to be input into the trained model to obtain various information about the E-nose. With the utilization of an unmanned gas-sensing test system, large-scale measurements of the E-nose can be carried out automatically. A baseline tracking algorithm (BTA) is designed based on the relative changes of short-term data, reducing the impact of long-term shifts. Over thousands of gas response processes and more than 10 million sensing data have participated in the training of the deep learning model. The 5-fold cross-validation method shows that the fully trained model has an outstanding generalization performance. After the baseline is tracked automatically, the accuracy of three tasks towards 12 kinds of volatile organic compounds (VOCs) is about 95% (type recognition: 95.2%, concentration prediction: 92.1%, status judgment: 97.3%) using only 4 s of sensing data during the response status of the E-nose. Our work shows the distinct advantages of combining “big data” and “deep learning” in the gas-sensing field and further proves that the employment of MTL-CNN can significantly improve the training and application efficiency of the E-nose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
皛鱼应助大侦探皮卡丘采纳,获得10
2秒前
Akim应助芋圆Z.采纳,获得10
2秒前
dsfsgf完成签到,获得积分20
2秒前
2秒前
Hello应助范先生采纳,获得10
3秒前
zpbb完成签到,获得积分10
4秒前
4秒前
5秒前
肖遥完成签到,获得积分10
5秒前
111发布了新的文献求助10
6秒前
小闵完成签到,获得积分10
6秒前
小蘑菇应助胡树采纳,获得10
6秒前
8秒前
8秒前
8秒前
威武雪兰完成签到,获得积分10
8秒前
8秒前
一坨完成签到 ,获得积分10
8秒前
科研通AI5应助net80yhm采纳,获得10
9秒前
lh发布了新的文献求助10
10秒前
Einson完成签到 ,获得积分10
11秒前
lx发布了新的文献求助10
11秒前
001完成签到,获得积分10
12秒前
开着飞机骑拖拉机完成签到,获得积分10
12秒前
寇婧怡完成签到 ,获得积分10
13秒前
阿湫发布了新的文献求助10
13秒前
Qsss发布了新的文献求助10
13秒前
13秒前
14秒前
JamesPei应助111采纳,获得10
14秒前
执笔完成签到,获得积分10
14秒前
手可摘星辰完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
李健应助大帅采纳,获得10
16秒前
17秒前
冷艳的火龙果完成签到,获得积分10
17秒前
不知完成签到 ,获得积分10
17秒前
Zard发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048