Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning

电子鼻 计算机科学 人工智能 卷积神经网络 一般化 任务(项目管理) 模式识别(心理学) 人工神经网络 深度学习 机器学习 比例(比率) 试验数据 特征(语言学) 块(置换群论) 工程类 数学分析 哲学 物理 量子力学 语言学 程序设计语言 系统工程 数学 几何学
作者
Tao Wang,Hexin Zhang,Yu Wu,Wenkai Jiang,Xinwei Chen,Min Zeng,Jianhua Yang,Yanjie Su,Nantao Hu,Zhi Yang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:351: 130915-130915 被引量:90
标识
DOI:10.1016/j.snb.2021.130915
摘要

Pattern recognition is the core component of the electronic nose (E-nose). Traditional machine learning algorithms highly rely on the feature data selected manually for model training and testing. A complete experiment must be performed before the data can be further processed. To realize the automatic extraction of response features and simplify the model’s training and application process, a multi-task convolutional neural network (MTL-CNN) with a dual-block knowledge-sharing structure is designed to train a model for the E-nose system. This model can simultaneously perform three different classification tasks, for the purposes of target discrimination, concentration prediction, and state judgment. Only a few consecutive seconds of response data are needed to be input into the trained model to obtain various information about the E-nose. With the utilization of an unmanned gas-sensing test system, large-scale measurements of the E-nose can be carried out automatically. A baseline tracking algorithm (BTA) is designed based on the relative changes of short-term data, reducing the impact of long-term shifts. Over thousands of gas response processes and more than 10 million sensing data have participated in the training of the deep learning model. The 5-fold cross-validation method shows that the fully trained model has an outstanding generalization performance. After the baseline is tracked automatically, the accuracy of three tasks towards 12 kinds of volatile organic compounds (VOCs) is about 95% (type recognition: 95.2%, concentration prediction: 92.1%, status judgment: 97.3%) using only 4 s of sensing data during the response status of the E-nose. Our work shows the distinct advantages of combining “big data” and “deep learning” in the gas-sensing field and further proves that the employment of MTL-CNN can significantly improve the training and application efficiency of the E-nose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果子完成签到,获得积分20
1秒前
xianshuo发布了新的文献求助10
1秒前
Criminology34应助干净秋寒采纳,获得10
2秒前
2秒前
fz完成签到,获得积分10
2秒前
姜一笑完成签到,获得积分10
2秒前
木今完成签到,获得积分10
2秒前
王泽完成签到,获得积分20
2秒前
Minus完成签到,获得积分10
3秒前
曹孟德完成签到,获得积分10
4秒前
小蘑菇应助red采纳,获得10
4秒前
hhhhhh发布了新的文献求助20
4秒前
zzt发布了新的文献求助10
4秒前
杰bro完成签到,获得积分10
4秒前
八九完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI6应助CooLIT采纳,获得10
6秒前
李爱国应助WRL采纳,获得10
6秒前
初青酱完成签到,获得积分10
6秒前
lin完成签到,获得积分10
7秒前
xin完成签到,获得积分10
8秒前
zihan完成签到,获得积分10
8秒前
之贻完成签到,获得积分10
8秒前
8秒前
9秒前
W1ll完成签到,获得积分10
9秒前
123完成签到,获得积分10
9秒前
小单王完成签到,获得积分10
9秒前
Andy完成签到,获得积分10
9秒前
小桃子完成签到 ,获得积分10
10秒前
10秒前
xianshuo完成签到,获得积分10
10秒前
一路狂奔等不了完成签到 ,获得积分10
11秒前
自觉画笔完成签到 ,获得积分10
11秒前
雪白胡萝卜完成签到,获得积分10
11秒前
Snow完成签到,获得积分10
11秒前
茶博士发布了新的文献求助10
12秒前
空白完成签到,获得积分10
12秒前
英姑应助112450195采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326254
求助须知:如何正确求助?哪些是违规求助? 4466503
关于积分的说明 13897045
捐赠科研通 4358844
什么是DOI,文献DOI怎么找? 2394304
邀请新用户注册赠送积分活动 1387823
关于科研通互助平台的介绍 1358676