Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning

电子鼻 计算机科学 人工智能 卷积神经网络 一般化 任务(项目管理) 模式识别(心理学) 人工神经网络 深度学习 机器学习 比例(比率) 试验数据 特征(语言学) 块(置换群论) 工程类 数学分析 哲学 物理 量子力学 语言学 程序设计语言 系统工程 数学 几何学
作者
Tao Wang,Hexin Zhang,Yu Wu,Wenkai Jiang,Xinwei Chen,Min Zeng,Jianhua Yang,Yanjie Su,Nantao Hu,Zhi Yang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:351: 130915-130915 被引量:90
标识
DOI:10.1016/j.snb.2021.130915
摘要

Pattern recognition is the core component of the electronic nose (E-nose). Traditional machine learning algorithms highly rely on the feature data selected manually for model training and testing. A complete experiment must be performed before the data can be further processed. To realize the automatic extraction of response features and simplify the model’s training and application process, a multi-task convolutional neural network (MTL-CNN) with a dual-block knowledge-sharing structure is designed to train a model for the E-nose system. This model can simultaneously perform three different classification tasks, for the purposes of target discrimination, concentration prediction, and state judgment. Only a few consecutive seconds of response data are needed to be input into the trained model to obtain various information about the E-nose. With the utilization of an unmanned gas-sensing test system, large-scale measurements of the E-nose can be carried out automatically. A baseline tracking algorithm (BTA) is designed based on the relative changes of short-term data, reducing the impact of long-term shifts. Over thousands of gas response processes and more than 10 million sensing data have participated in the training of the deep learning model. The 5-fold cross-validation method shows that the fully trained model has an outstanding generalization performance. After the baseline is tracked automatically, the accuracy of three tasks towards 12 kinds of volatile organic compounds (VOCs) is about 95% (type recognition: 95.2%, concentration prediction: 92.1%, status judgment: 97.3%) using only 4 s of sensing data during the response status of the E-nose. Our work shows the distinct advantages of combining “big data” and “deep learning” in the gas-sensing field and further proves that the employment of MTL-CNN can significantly improve the training and application efficiency of the E-nose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
浮游应助单薄的寻桃采纳,获得10
7秒前
10秒前
Jodie发布了新的文献求助10
12秒前
12秒前
科研通AI6应助nmeiko采纳,获得10
12秒前
13秒前
qxm完成签到 ,获得积分10
15秒前
16秒前
Quanta完成签到,获得积分10
17秒前
渔婆发布了新的文献求助10
18秒前
laruijoint完成签到,获得积分10
18秒前
淘气乌龙茶完成签到 ,获得积分10
19秒前
鹏程完成签到,获得积分10
21秒前
丘比特应助呆妞采纳,获得10
24秒前
25秒前
蔡克东发布了新的文献求助10
25秒前
LL完成签到 ,获得积分10
30秒前
小泡芙完成签到,获得积分10
31秒前
朱梦琳朱梦琳完成签到,获得积分10
32秒前
32秒前
32秒前
古藤完成签到 ,获得积分10
33秒前
37秒前
在水一方应助伯言采纳,获得10
37秒前
吴咪发布了新的文献求助10
37秒前
呆妞发布了新的文献求助10
38秒前
浮游应助Quanta采纳,获得10
39秒前
科目三应助少年游采纳,获得10
43秒前
吴咪完成签到,获得积分10
45秒前
46秒前
47秒前
48秒前
hai发布了新的文献求助10
51秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
Akim应助科研通管家采纳,获得10
52秒前
无极微光应助科研通管家采纳,获得20
52秒前
研友_VZG7GZ应助科研通管家采纳,获得10
52秒前
斯文败类应助科研通管家采纳,获得10
52秒前
小马甲应助科研通管家采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555