亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three‐dimensional feature maps and convolutional neural network‐based emotion recognition

模式识别(心理学) 计算机科学 人工智能 卷积神经网络 脑电图 特征(语言学) 小波 情绪分类 特征提取 熵(时间箭头) 语音识别 物理 哲学 精神科 心理学 量子力学 语言学
作者
Xiangwei Zheng,Xiaomei Yu,Yongqiang Yin,Tiantian Li,Xiaoyan Yan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:36 (11): 6312-6336 被引量:38
标识
DOI:10.1002/int.22551
摘要

In recent years, automatic emotion recognition renders human–computer interaction systems intelligent and friendly. Emotion recognition based on electroencephalogram (EEG) has received widespread attention and many research results have emerged, but how to establish an integrated temporal and spatial feature fusion and classification method with improved convolutional neural networks (CNNs) and how to utilize the spatial information of different electrode channels to improve the accuracy of emotion recognition in the deep learning are two important challenges. This paper proposes an emotion recognition method based on three-dimensional (3D) feature maps and CNNs. First, EEG data are calibrated with 3 s baseline data and divided into segments with 6 s time window, and then the wavelet energy ratio, wavelet entropy of five rhythms, and approximate entropy are extracted from each segment. Second, the extracted features are arranged according to EEG channel mapping positions, and then each segment is converted into a 3D feature map, which is used to simulate the relative position of electrode channels on the scalp and provides spatial information for emotion recognition. Finally, a CNN framework is designed to learn local connections among electrode channels from 3D feature maps and to improve the accuracy of emotion recognition. The experiments on data set for emotion analysis using physiological signals data set were conducted and the average classification accuracy of 93.61% and 94.04% for valence and arousal was attained in subject-dependent experiments while 83.83% and 84.53% in subject-independent experiments. The experimental results demonstrate that the proposed method has better classification accuracy than the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助elf采纳,获得20
2秒前
6秒前
今后应助潇洒凝天采纳,获得30
10秒前
邹醉蓝完成签到,获得积分10
12秒前
elf完成签到,获得积分20
18秒前
23秒前
潇洒凝天发布了新的文献求助30
29秒前
pluto应助潇洒凝天采纳,获得30
37秒前
Sandy完成签到,获得积分10
55秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小蘑菇应助满意人英采纳,获得10
1分钟前
一介尘埃完成签到 ,获得积分10
1分钟前
1分钟前
111完成签到 ,获得积分10
1分钟前
TXZ06完成签到,获得积分10
2分钟前
DONGLINGZHENG发布了新的文献求助10
2分钟前
实力不允许完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
elf发布了新的文献求助20
4分钟前
Augustines完成签到,获得积分10
5分钟前
5分钟前
十三发布了新的文献求助10
5分钟前
大个应助简单的安珊采纳,获得10
5分钟前
十三完成签到,获得积分10
5分钟前
8分钟前
8分钟前
8分钟前
天宇发布了新的文献求助10
8分钟前
英姑应助天宇采纳,获得10
8分钟前
天宇完成签到,获得积分10
8分钟前
云云完成签到,获得积分10
9分钟前
9分钟前
小白菜完成签到,获得积分10
10分钟前
jyy应助成德节度使采纳,获得10
11分钟前
轻松念蕾完成签到,获得积分10
11分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064487
关于积分的说明 9088231
捐赠科研通 2755138
什么是DOI,文献DOI怎么找? 1511818
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473