计算机科学
图形
时态数据库
空间分析
邻接表
数据挖掘
人工智能
模式识别(心理学)
理论计算机科学
算法
地理
遥感
作者
Mengzhang Li,Zhanxing Zhu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2021-05-18
卷期号:35 (5): 4189-4196
被引量:319
标识
DOI:10.1609/aaai.v35i5.16542
摘要
Spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads. Existing frameworks usually utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations. However, limited representations of given spatial graph structure with incomplete adjacent connections may restrict effective spatial-temporal dependencies learning of those models. Furthermore, existing methods were out at elbows when solving complicated spatial-temporal data: they usually utilize separate modules for spatial and temporal correlations, or they only use independent components capturing localized or global heterogeneous dependencies. To overcome those limitations, our paper proposes a novel Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting. First, a data-driven method of generating “temporal graph” is proposed to compensate several genuine correlations that spatial graph may not reflect. STFGNN could effectively learn hidden spatial-temporal dependencies by a novel fusion operation of various spatial and temporal graphs, treated for different time periods in parallel. Meanwhile, by integrating this fusion graph module and a novel gated convolution module into a unified layer parallelly, STFGNN could handle long sequences by learning more spatial-temporal dependencies with layers stacked. Experimental results on several public traffic datasets demonstrate that our method achieves state-of-the-art performance consistently than other baselines.
科研通智能强力驱动
Strongly Powered by AbleSci AI