Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification

支持向量机 过度拟合 计算机科学 人工智能 径向基函数 模式识别(心理学) 分类器(UML) 线性分类器 参数统计 一般化 上下文图像分类 机器学习 数据挖掘 遥感 图像(数学) 数学 人工神经网络 统计 地质学 数学分析
作者
Abdul Razaque,Mohamed Ben Haj Frej,Muder Almiani,Munif Alotaibi,Bandar Alotaibi
出处
期刊:Sensors [MDPI AG]
卷期号:21 (13): 4431-4431 被引量:36
标识
DOI:10.3390/s21134431
摘要

Remote sensing technologies have been widely used in the contexts of land cover and land use. The image classification algorithms used in remote sensing are of paramount importance since the reliability of the result from remote sensing depends heavily on the classification accuracy. Parametric classifiers based on traditional statistics have successfully been used in remote sensing classification, but the accuracy is greatly impacted and rather constrained by the statistical distribution of the sensing data. To eliminate those constraints, new variants of support vector machine (SVM) are introduced. In this paper, we propose and implement land use classification based on improved SVM-enabled radial basis function (RBF) and SVM-Linear for image sensing. The proposed variants are applied for the cross-validation to determine how the optimization of parameters can affect the accuracy. The accuracy assessment includes both training and test sets, addressing the problems of overfitting and underfitting. Furthermore, it is not trivial to determine the generalization problem merely based on a training dataset. Thus, the improved SVM-RBF and SVM-Linear also demonstrate the outstanding generalization performance. The proposed SVM-RBF and SVM-Linear variants have been compared with the traditional algorithms (Maximum Likelihood Classifier (MLC) and Minimum Distance Classifier (MDC)), which are highly compatible with remote sensing images. Furthermore, the MLC and MDC are mathematically modeled and characterized with new features. Also, we compared the proposed improved SVM-RBF and SVM-Linear with the current state-of-the-art algorithms. Based on the results, it is confirmed that proposed variants have higher overall accuracy, reliability, and fault-tolerance than traditional as well as latest state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
药学小朋友完成签到,获得积分10
刚刚
张先生2365完成签到,获得积分10
刚刚
拾遗就是我完成签到,获得积分10
1秒前
枯藤老柳树完成签到,获得积分10
1秒前
momo完成签到,获得积分10
2秒前
2秒前
Lonala完成签到,获得积分10
2秒前
Clover04完成签到,获得积分10
3秒前
入秋的杰尼龟完成签到,获得积分10
3秒前
一目完成签到,获得积分10
4秒前
Sakura完成签到 ,获得积分10
5秒前
莫愁发布了新的文献求助10
6秒前
王者归来完成签到,获得积分10
7秒前
John完成签到,获得积分10
8秒前
8秒前
於奎完成签到,获得积分10
8秒前
椎珏完成签到,获得积分10
10秒前
机智的从霜完成签到 ,获得积分10
10秒前
yuanshan1995完成签到,获得积分10
11秒前
再见了星空完成签到,获得积分10
11秒前
蓝景轩辕完成签到 ,获得积分0
11秒前
痴情的寒云完成签到 ,获得积分10
12秒前
992575完成签到,获得积分10
12秒前
周小鱼完成签到,获得积分10
12秒前
12秒前
John发布了新的文献求助10
12秒前
leeOOO完成签到,获得积分10
13秒前
pp发布了新的文献求助10
14秒前
晨光中完成签到,获得积分10
14秒前
科研王子完成签到,获得积分10
15秒前
忧伤的慕梅完成签到,获得积分10
15秒前
Ya完成签到 ,获得积分10
15秒前
小菜完成签到 ,获得积分10
16秒前
慕苡完成签到 ,获得积分10
16秒前
旧城旧巷等旧人完成签到 ,获得积分10
17秒前
莫愁完成签到,获得积分10
17秒前
18秒前
feiCheung完成签到 ,获得积分10
18秒前
汪汪发布了新的文献求助10
22秒前
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443