亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification

支持向量机 过度拟合 计算机科学 人工智能 径向基函数 模式识别(心理学) 分类器(UML) 线性分类器 参数统计 一般化 上下文图像分类 机器学习 数据挖掘 遥感 图像(数学) 数学 人工神经网络 统计 数学分析 地质学
作者
Abdul Razaque,Mohamed Ben Haj Frej,Muder Almiani,Munif Alotaibi,Bandar Alotaibi
出处
期刊:Sensors [MDPI AG]
卷期号:21 (13): 4431-4431 被引量:36
标识
DOI:10.3390/s21134431
摘要

Remote sensing technologies have been widely used in the contexts of land cover and land use. The image classification algorithms used in remote sensing are of paramount importance since the reliability of the result from remote sensing depends heavily on the classification accuracy. Parametric classifiers based on traditional statistics have successfully been used in remote sensing classification, but the accuracy is greatly impacted and rather constrained by the statistical distribution of the sensing data. To eliminate those constraints, new variants of support vector machine (SVM) are introduced. In this paper, we propose and implement land use classification based on improved SVM-enabled radial basis function (RBF) and SVM-Linear for image sensing. The proposed variants are applied for the cross-validation to determine how the optimization of parameters can affect the accuracy. The accuracy assessment includes both training and test sets, addressing the problems of overfitting and underfitting. Furthermore, it is not trivial to determine the generalization problem merely based on a training dataset. Thus, the improved SVM-RBF and SVM-Linear also demonstrate the outstanding generalization performance. The proposed SVM-RBF and SVM-Linear variants have been compared with the traditional algorithms (Maximum Likelihood Classifier (MLC) and Minimum Distance Classifier (MDC)), which are highly compatible with remote sensing images. Furthermore, the MLC and MDC are mathematically modeled and characterized with new features. Also, we compared the proposed improved SVM-RBF and SVM-Linear with the current state-of-the-art algorithms. Based on the results, it is confirmed that proposed variants have higher overall accuracy, reliability, and fault-tolerance than traditional as well as latest state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenlc971125完成签到 ,获得积分10
4秒前
Owen应助科研通管家采纳,获得10
26秒前
开朗若之完成签到 ,获得积分10
37秒前
su完成签到 ,获得积分10
55秒前
陆康完成签到 ,获得积分10
1分钟前
ding应助小小果妈采纳,获得150
2分钟前
追寻奇迹完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
安静的小蘑菇完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
静待花开完成签到 ,获得积分10
5分钟前
5分钟前
万能图书馆应助923采纳,获得10
5分钟前
210完成签到,获得积分10
6分钟前
酷酷海豚完成签到,获得积分10
7分钟前
SciGPT应助白初露采纳,获得30
7分钟前
TwentyNine完成签到,获得积分10
7分钟前
7分钟前
白初露发布了新的文献求助30
8分钟前
悟空爱吃酥橙完成签到,获得积分10
8分钟前
江郁清发布了新的文献求助10
8分钟前
白初露完成签到,获得积分10
8分钟前
9分钟前
knight7m完成签到 ,获得积分10
9分钟前
江郁清发布了新的文献求助10
9分钟前
9分钟前
asdasd0发布了新的文献求助10
10分钟前
taku完成签到 ,获得积分10
11分钟前
CXS发布了新的文献求助10
12分钟前
我主沉浮完成签到,获得积分10
12分钟前
量子星尘发布了新的文献求助10
12分钟前
HL发布了新的文献求助10
13分钟前
TXZ06完成签到,获得积分10
13分钟前
Hello应助江郁清采纳,获得10
13分钟前
傻傻的哈密瓜完成签到,获得积分10
13分钟前
13分钟前
江郁清发布了新的文献求助10
14分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584693
求助须知:如何正确求助?哪些是违规求助? 4668633
关于积分的说明 14771517
捐赠科研通 4613312
什么是DOI,文献DOI怎么找? 2530178
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499