Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification

支持向量机 过度拟合 计算机科学 人工智能 径向基函数 模式识别(心理学) 分类器(UML) 线性分类器 参数统计 一般化 上下文图像分类 机器学习 数据挖掘 遥感 图像(数学) 数学 人工神经网络 统计 地质学 数学分析
作者
Abdul Razaque,Mohamed Ben Haj Frej,Muder Almiani,Munif Alotaibi,Bandar Alotaibi
出处
期刊:Sensors [MDPI AG]
卷期号:21 (13): 4431-4431 被引量:36
标识
DOI:10.3390/s21134431
摘要

Remote sensing technologies have been widely used in the contexts of land cover and land use. The image classification algorithms used in remote sensing are of paramount importance since the reliability of the result from remote sensing depends heavily on the classification accuracy. Parametric classifiers based on traditional statistics have successfully been used in remote sensing classification, but the accuracy is greatly impacted and rather constrained by the statistical distribution of the sensing data. To eliminate those constraints, new variants of support vector machine (SVM) are introduced. In this paper, we propose and implement land use classification based on improved SVM-enabled radial basis function (RBF) and SVM-Linear for image sensing. The proposed variants are applied for the cross-validation to determine how the optimization of parameters can affect the accuracy. The accuracy assessment includes both training and test sets, addressing the problems of overfitting and underfitting. Furthermore, it is not trivial to determine the generalization problem merely based on a training dataset. Thus, the improved SVM-RBF and SVM-Linear also demonstrate the outstanding generalization performance. The proposed SVM-RBF and SVM-Linear variants have been compared with the traditional algorithms (Maximum Likelihood Classifier (MLC) and Minimum Distance Classifier (MDC)), which are highly compatible with remote sensing images. Furthermore, the MLC and MDC are mathematically modeled and characterized with new features. Also, we compared the proposed improved SVM-RBF and SVM-Linear with the current state-of-the-art algorithms. Based on the results, it is confirmed that proposed variants have higher overall accuracy, reliability, and fault-tolerance than traditional as well as latest state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良香岚发布了新的文献求助10
刚刚
刚刚
huizi完成签到,获得积分20
刚刚
RichardZ完成签到,获得积分10
刚刚
刚刚
左左发布了新的文献求助10
1秒前
执着的怜寒应助哈哈哈haha采纳,获得40
1秒前
Cassie完成签到 ,获得积分10
2秒前
2秒前
雄i完成签到,获得积分10
2秒前
Chenly完成签到,获得积分10
3秒前
科目三应助韭黄采纳,获得10
3秒前
3秒前
轻松笙发布了新的文献求助10
3秒前
5秒前
5秒前
a1oft发布了新的文献求助10
6秒前
觅桃乌龙完成签到,获得积分10
6秒前
7秒前
melodyezi发布了新的文献求助10
8秒前
8秒前
FFFFFFF应助柚子采纳,获得10
8秒前
9℃发布了新的文献求助10
8秒前
MailkMonk发布了新的文献求助10
8秒前
ZQ完成签到,获得积分10
8秒前
8秒前
wcy发布了新的文献求助10
9秒前
9秒前
尹博士完成签到,获得积分10
9秒前
迟大猫应助周士乐采纳,获得10
10秒前
追寻的筝发布了新的文献求助10
10秒前
喜洋洋发布了新的文献求助10
10秒前
NANA完成签到,获得积分10
10秒前
乐乐应助协和_子鱼采纳,获得10
10秒前
淇淇完成签到,获得积分10
11秒前
11秒前
luuuuuing完成签到,获得积分10
11秒前
沉静的迎荷完成签到,获得积分10
12秒前
天天快乐应助BreezyGallery采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759