Technical Note: A cascade 3D U‐Net for dose prediction in radiotherapy

计算机科学 剂量学 人工智能 核医学 机器学习 预测建模 级联 体素 数据挖掘 预处理器 医学 化学 色谱法
作者
Shuolin Liu,Jingjing Zhang,Teng Li,Hui Yan,Jianfei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 5574-5582 被引量:83
标识
DOI:10.1002/mp.15034
摘要

Abstract Purpose Although large datasets are available, to learn a robust dose prediction model from a limited dataset still remains challenging. This work employed cascaded deep learning models and advanced training strategies with a limited dataset to precisely predict three‐dimensional (3D) dose distribution. Methods A Cascade 3D (C3D) model is developed based on the cascade mechanism and 3D U‐Net network units. During model training, data augmentations are used to improve the generalization ability of the prediction model. A knowledge distillation technique is employed to further improve the capability of model learning. The C3D network was evaluated using the OpenKBP challenge dataset and competed with those models proposed by more than 40 teams globally. Additionally, it was compared with five existing cutting‐edge dose prediction models. The performance of these prediction models was evaluated by voxel‐based mean absolute error (MAE) and clinical‐related dosimetric metrics. The code and models are publicly available online ( https://github.com/LSL000UD/RTDosePrediction ). Results The MAE of a single C3D model without test‐time augmentation is 2.50 Gy (3.57% related to prescription dose) for nonzero dose area, which outperforms the other five dose prediction models by about 0.1 Gy–1.7 Gy. The C3D model won both dose and DVH streams of AAPM 2020 OpenKBP challenge with dose score of 2.31 and DVH score of 1.55. Conclusions The Cascading U‐Nets is an ideal solution for 3D dose prediction from a limited dataset. The proper data preprocessing, data augmentation, and optimization procedure are more important than architectural modifications of deep learning network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lv完成签到,获得积分10
刚刚
刚刚
GuMingyang发布了新的文献求助10
1秒前
2秒前
传奇3应助年年年年采纳,获得10
3秒前
小武完成签到,获得积分10
4秒前
4秒前
LX完成签到,获得积分10
4秒前
Mangooo完成签到,获得积分10
4秒前
猫猫无敌完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
聪明帅哥发布了新的文献求助10
5秒前
skycool发布了新的文献求助10
5秒前
5秒前
回复对方完成签到,获得积分10
6秒前
6秒前
理li发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
6秒前
7秒前
7秒前
果称完成签到,获得积分10
7秒前
ZS驳回了Akim应助
8秒前
猫猫无敌发布了新的文献求助10
8秒前
9秒前
朴素八宝粥完成签到,获得积分10
9秒前
10秒前
完美世界应助余泽楷采纳,获得10
10秒前
苦行僧发布了新的文献求助30
11秒前
甄昕发布了新的文献求助10
11秒前
11秒前
852应助skycool采纳,获得10
11秒前
12秒前
笨笨凡松完成签到,获得积分10
12秒前
滴答完成签到 ,获得积分10
12秒前
负责雨安发布了新的文献求助10
12秒前
13秒前
路过蜻蜓完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400