Technical Note: A cascade 3D U‐Net for dose prediction in radiotherapy

计算机科学 剂量学 人工智能 核医学 机器学习 预测建模 级联 体素 数据挖掘 预处理器 医学 化学 色谱法
作者
Shuolin Liu,Jingjing Zhang,Teng Li,Hui Yan,Jianfei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 5574-5582 被引量:53
标识
DOI:10.1002/mp.15034
摘要

Abstract Purpose Although large datasets are available, to learn a robust dose prediction model from a limited dataset still remains challenging. This work employed cascaded deep learning models and advanced training strategies with a limited dataset to precisely predict three‐dimensional (3D) dose distribution. Methods A Cascade 3D (C3D) model is developed based on the cascade mechanism and 3D U‐Net network units. During model training, data augmentations are used to improve the generalization ability of the prediction model. A knowledge distillation technique is employed to further improve the capability of model learning. The C3D network was evaluated using the OpenKBP challenge dataset and competed with those models proposed by more than 40 teams globally. Additionally, it was compared with five existing cutting‐edge dose prediction models. The performance of these prediction models was evaluated by voxel‐based mean absolute error (MAE) and clinical‐related dosimetric metrics. The code and models are publicly available online ( https://github.com/LSL000UD/RTDosePrediction ). Results The MAE of a single C3D model without test‐time augmentation is 2.50 Gy (3.57% related to prescription dose) for nonzero dose area, which outperforms the other five dose prediction models by about 0.1 Gy–1.7 Gy. The C3D model won both dose and DVH streams of AAPM 2020 OpenKBP challenge with dose score of 2.31 and DVH score of 1.55. Conclusions The Cascading U‐Nets is an ideal solution for 3D dose prediction from a limited dataset. The proper data preprocessing, data augmentation, and optimization procedure are more important than architectural modifications of deep learning network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助子桑采纳,获得10
1秒前
星辰大海应助高高的寻梅采纳,获得10
1秒前
一条纤维化的鱼完成签到,获得积分10
1秒前
乔乔完成签到,获得积分10
2秒前
2秒前
3秒前
bbz完成签到,获得积分10
3秒前
4秒前
风清扬发布了新的文献求助10
4秒前
海棠完成签到,获得积分10
4秒前
yangyang发布了新的文献求助10
5秒前
hhq发布了新的文献求助10
5秒前
Singularity应助自行车v采纳,获得10
5秒前
乔乔发布了新的文献求助10
5秒前
ning_qing发布了新的文献求助30
6秒前
无花果应助89采纳,获得10
7秒前
7秒前
8秒前
Akim应助阳阿儿采纳,获得10
8秒前
9秒前
哭泣灯泡完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
视野胤发布了新的文献求助10
13秒前
yangyang完成签到 ,获得积分10
13秒前
lll应助白衣轻叹采纳,获得10
14秒前
蛋蛋1完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
17秒前
19秒前
端庄煎饼完成签到,获得积分10
20秒前
CipherSage应助认真的谷蓝采纳,获得10
21秒前
fygiuh完成签到,获得积分10
21秒前
21秒前
LLL完成签到 ,获得积分10
22秒前
some完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230