Technical Note: A cascade 3D U‐Net for dose prediction in radiotherapy

计算机科学 剂量学 人工智能 核医学 机器学习 预测建模 级联 体素 数据挖掘 预处理器 医学 色谱法 化学
作者
Shuolin Liu,Jingjing Zhang,Teng Li,Hui Yan,Jianfei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 5574-5582 被引量:69
标识
DOI:10.1002/mp.15034
摘要

Abstract Purpose Although large datasets are available, to learn a robust dose prediction model from a limited dataset still remains challenging. This work employed cascaded deep learning models and advanced training strategies with a limited dataset to precisely predict three‐dimensional (3D) dose distribution. Methods A Cascade 3D (C3D) model is developed based on the cascade mechanism and 3D U‐Net network units. During model training, data augmentations are used to improve the generalization ability of the prediction model. A knowledge distillation technique is employed to further improve the capability of model learning. The C3D network was evaluated using the OpenKBP challenge dataset and competed with those models proposed by more than 40 teams globally. Additionally, it was compared with five existing cutting‐edge dose prediction models. The performance of these prediction models was evaluated by voxel‐based mean absolute error (MAE) and clinical‐related dosimetric metrics. The code and models are publicly available online ( https://github.com/LSL000UD/RTDosePrediction ). Results The MAE of a single C3D model without test‐time augmentation is 2.50 Gy (3.57% related to prescription dose) for nonzero dose area, which outperforms the other five dose prediction models by about 0.1 Gy–1.7 Gy. The C3D model won both dose and DVH streams of AAPM 2020 OpenKBP challenge with dose score of 2.31 and DVH score of 1.55. Conclusions The Cascading U‐Nets is an ideal solution for 3D dose prediction from a limited dataset. The proper data preprocessing, data augmentation, and optimization procedure are more important than architectural modifications of deep learning network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小珂完成签到,获得积分10
3秒前
皮皮虾完成签到 ,获得积分10
5秒前
6秒前
不能吃太饱完成签到 ,获得积分10
8秒前
buqi发布了新的文献求助10
9秒前
伶俐紫完成签到,获得积分10
10秒前
10秒前
11秒前
Annie发布了新的文献求助20
11秒前
二队淼队长完成签到,获得积分10
12秒前
我是老大应助清沧炽魂采纳,获得10
12秒前
彳亍宣完成签到 ,获得积分10
13秒前
缥缈的闭月完成签到,获得积分10
16秒前
buqi完成签到,获得积分10
16秒前
孔wj完成签到,获得积分10
17秒前
縤雨完成签到 ,获得积分10
17秒前
17秒前
Tao完成签到,获得积分10
22秒前
22秒前
黄景滨完成签到 ,获得积分10
23秒前
24秒前
wwrjj完成签到,获得积分10
25秒前
liu完成签到,获得积分10
25秒前
孤独听雨的猫完成签到 ,获得积分10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
不倦应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
27秒前
macarthur发布了新的文献求助10
27秒前
27秒前
HaojunWang完成签到 ,获得积分10
28秒前
脑洞疼应助wwrjj采纳,获得10
31秒前
Jacob完成签到,获得积分10
31秒前
聪明的宛菡完成签到,获得积分10
33秒前
殷勤的涵梅完成签到 ,获得积分10
35秒前
38秒前
40秒前
41秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561