An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery

故障检测与隔离 人工智能 不可用 计算机科学 异常检测 断层(地质) 特征(语言学) 特征提取 无监督学习 模式识别(心理学) 机器学习 工程类 可靠性工程 语言学 哲学 执行机构 地震学 地质学
作者
Lucas Costa Brito,Gian Antonio Susto,Jorge Nei Brito,Marcus Antônio Viana Duarte
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:163: 108105-108105 被引量:215
标识
DOI:10.1016/j.ymssp.2021.108105
摘要

The monitoring of rotating machinery is an essential task in today’s production processes. Currently, several machine learning and deep learning-based modules have achieved excellent results in fault detection and diagnosis. Nevertheless, to further increase user adoption and diffusion of such technologies, users and human experts must be provided with explanations and insights by the modules. Another issue is related, in most cases, with the unavailability of labeled historical data that makes the use of supervised models unfeasible. Therefore, a new approach for fault detection and diagnosis in rotating machinery is here proposed. The methodology consists of three parts: feature extraction, fault detection and fault diagnosis. In the first part, the vibration features in the time and frequency domains are extracted. Secondly, in the fault detection, the presence of fault is verified in an unsupervised manner based on anomaly detection algorithms. The modularity of the methodology allows different algorithms to be implemented. Finally, in fault diagnosis, Shapley Additive Explanations (SHAP), a technique to interpret black-box models, is used. Through the feature importance ranking obtained by the model explainability, the fault diagnosis is performed. Two tools for diagnosis are proposed, namely: unsupervised classification and root cause analysis. The effectiveness of the proposed approach is shown on three datasets containing different mechanical faults in rotating machinery. The study also presents a comparison between models used in machine learning explainability: SHAP and Local Depth-based Feature Importance for the Isolation Forest (Local-DIFFI). Lastly, an analysis of several state-of-art anomaly detection algorithms in rotating machinery is included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助struggling2026采纳,获得10
刚刚
2秒前
完美世界应助沐秋采纳,获得10
3秒前
wu完成签到 ,获得积分10
3秒前
bofu发布了新的文献求助10
4秒前
单纯的凡雁完成签到,获得积分20
4秒前
4秒前
ailsa完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
momo发布了新的文献求助10
9秒前
9秒前
畅快海云完成签到 ,获得积分10
10秒前
bofu发布了新的文献求助30
10秒前
小曾发布了新的文献求助10
11秒前
11秒前
JW发布了新的文献求助10
11秒前
12秒前
12秒前
toniki完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
超帅彩虹发布了新的文献求助10
13秒前
14秒前
CodeCraft应助健忘的藏花采纳,获得10
14秒前
沐紫心完成签到 ,获得积分10
15秒前
15秒前
15秒前
乾乾发布了新的文献求助10
15秒前
15秒前
bofu发布了新的文献求助30
16秒前
16秒前
沐秋发布了新的文献求助10
17秒前
18秒前
小曾完成签到,获得积分20
18秒前
19秒前
19秒前
绿兔子发布了新的文献求助10
19秒前
不会科研的研0完成签到 ,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105