An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery

故障检测与隔离 人工智能 不可用 计算机科学 异常检测 断层(地质) 特征(语言学) 特征提取 无监督学习 模式识别(心理学) 机器学习 工程类 可靠性工程 语言学 地质学 哲学 地震学 执行机构
作者
Lucas Costa Brito,Gian Antonio Susto,Jorge Nei Brito,Marcus Antônio Viana Duarte
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:163: 108105-108105 被引量:187
标识
DOI:10.1016/j.ymssp.2021.108105
摘要

The monitoring of rotating machinery is an essential task in today’s production processes. Currently, several machine learning and deep learning-based modules have achieved excellent results in fault detection and diagnosis. Nevertheless, to further increase user adoption and diffusion of such technologies, users and human experts must be provided with explanations and insights by the modules. Another issue is related, in most cases, with the unavailability of labeled historical data that makes the use of supervised models unfeasible. Therefore, a new approach for fault detection and diagnosis in rotating machinery is here proposed. The methodology consists of three parts: feature extraction, fault detection and fault diagnosis. In the first part, the vibration features in the time and frequency domains are extracted. Secondly, in the fault detection, the presence of fault is verified in an unsupervised manner based on anomaly detection algorithms. The modularity of the methodology allows different algorithms to be implemented. Finally, in fault diagnosis, Shapley Additive Explanations (SHAP), a technique to interpret black-box models, is used. Through the feature importance ranking obtained by the model explainability, the fault diagnosis is performed. Two tools for diagnosis are proposed, namely: unsupervised classification and root cause analysis. The effectiveness of the proposed approach is shown on three datasets containing different mechanical faults in rotating machinery. The study also presents a comparison between models used in machine learning explainability: SHAP and Local Depth-based Feature Importance for the Isolation Forest (Local-DIFFI). Lastly, an analysis of several state-of-art anomaly detection algorithms in rotating machinery is included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私茗发布了新的文献求助10
1秒前
田様应助科研竹签采纳,获得10
1秒前
kaio完成签到,获得积分10
2秒前
hibiwi完成签到,获得积分10
2秒前
qiu发布了新的文献求助10
3秒前
羊了个羊发布了新的文献求助30
4秒前
无则灵完成签到 ,获得积分10
6秒前
从容襄完成签到,获得积分10
8秒前
羊了个羊完成签到,获得积分10
13秒前
qiu完成签到,获得积分10
14秒前
光亮的太阳完成签到,获得积分10
16秒前
Menand完成签到,获得积分10
16秒前
Keven完成签到,获得积分10
16秒前
无私茗完成签到,获得积分20
18秒前
桐桐应助无则灵采纳,获得10
18秒前
星辰大海应助hwy采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
LARS应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
百无禁忌应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
英姑应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
慕青应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
脾气暴躁的小兔完成签到,获得积分10
25秒前
26秒前
27秒前
Davidjun完成签到,获得积分10
28秒前
郝宝真发布了新的文献求助10
29秒前
30秒前
心灵美芯发布了新的文献求助10
30秒前
枫叶完成签到 ,获得积分10
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816464
关于积分的说明 7912816
捐赠科研通 2476057
什么是DOI,文献DOI怎么找? 1318641
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388