列线图
医学
阶段(地层学)
肺癌
放射科
淋巴结
转移
淋巴结转移
肿瘤科
内科学
癌症
生物
古生物学
作者
Xingxing Zheng,Jingjing Shao,Linli Zhou,Li Wang,Yaqiong Ge,Gaoren Wang,Feng Feng
标识
DOI:10.1007/s43441-021-00345-1
摘要
The status of lymph node metastasis (LNM) is highly correlated with the recurrence and survival outcomes of patients with lung cancer. Thus, a tool that predicts LNM could benefit patient treatment and prognosis. The present study established a new radiomic model by combining computed tomography (CT) radiomic features and clinical parameters to predict the LNM status in patients with non-small cell lung cancer (NSCLC).Demographic parameters and clinical laboratory values were analyzed in 217 patients with stage I-IIIB NSCLC; 107 of the patients received CT scanning and radiomic characteristics were used for LNM assessment (76 in the training cohort and 31 in the validation cohort). The minimum redundancy maximum relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO) regression model were used to select the most predictive features on the basis of the 76 patients in the training set. The value of the area under the receiver operator characteristic (ROC) curve (AUC) was adopted to determine the correlation between LN status and the radiomics signature in training cohorts and then validated in the 31 patients of validation set. The radiomics nomogram was analyzed using univariate and multivariate logistic regression. Decision curve analysis (DCA) was performed to evaluate the clinical utility of this model.This was a retrospective study. Five radiomic characteristics were significantly correlated with LNM in the two cohorts (P < 0.05). The radiomic nomogram that incorporated the above radiomic characteristics, the RDW, and the CT-based LN status had satisfactory discrimination and calibration in the training (AUC, 0.79; 95% CI 0.69-0.89) and validation cohorts (AUC, 0.70; 95% CI 0.50-0.89).The DCA showed that the developed nomogram had promising clinical utility.The developed nomogram, combined with preoperative radiomics evidence, the RDW, and the CT-based LN status, has the potential to preoperatively predict LNM with high accuracy and can facilitate the prediction of LN status for NSCLC patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI