Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells

质子交换膜燃料电池 催化作用 沸石咪唑盐骨架 化学工程 贵金属 热解 材料科学 金属 碳纤维 纳米技术 化学 无机化学 金属有机骨架 有机化学 冶金 复合数 复合材料 工程类 吸附
作者
Feng Liu,Lei Shi,Xuanni Lin,Donglin Yu,Cai Zhang,Rui Xu,Dong Liu,Jieshan Qiu,Liming Dai
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:302: 120860-120860 被引量:68
标识
DOI:10.1016/j.apcatb.2021.120860
摘要

The design and development of highly efficient non-precious metal single-atomic ORR catalysts for proton exchange membrane fuel cells (PEMFCs) are highly desirable but challenging. Herein, we report a novel polydopamine (PDA)-metal complex-assisted pyrolysis strategy for producing zeolitic imidazolate framework-derived catalysts with a hierarchically porous carbon support and highly exposed dense-FeN4 sites ([email protected]). The resultant [email protected] catalyst shows remarkably enhanced performance for oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.828 V in 0.1 M HClO4 solution, which is close to commercial 20 wt% Pt/C catalyst. Impressively, the [email protected] exhibits peak power densities of 982 and 454 mW cm−2 in H2/O2 and H2/air PEMFCs, respectively, which are superior to most of non-precious metal catalysts reported to date. In addition, we construct the quantitative relationship between the active site activity and ORR performance, and prove the dominating role of the FeN4 site density to the observed excellent PEMFC performance. This work demonstrates a facile strategy to prepare the 3D hierarchically porous carbons with a maximized exposure of high-dense FeN4 sites (without acid treatment), providing a useful guidance for the design and development of novel highly-efficient single-atom catalysts for the renewable energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongjing发布了新的文献求助10
1秒前
老实的衬衫完成签到 ,获得积分10
2秒前
2秒前
2秒前
Fortune发布了新的文献求助10
3秒前
3秒前
Ripples完成签到,获得积分10
4秒前
彭于晏应助hongjing采纳,获得10
4秒前
科研通AI6应助wang采纳,获得10
4秒前
酷炫魂幽发布了新的文献求助10
5秒前
5秒前
浅蓝发布了新的文献求助10
6秒前
小杭76应助wocao采纳,获得10
6秒前
传奇3应助Refuel采纳,获得10
7秒前
huangbing123完成签到 ,获得积分10
7秒前
乐乐应助咩咩采纳,获得10
8秒前
漫天白沙完成签到 ,获得积分10
8秒前
tangzanwayne完成签到 ,获得积分10
9秒前
wanna发布了新的文献求助10
9秒前
9秒前
Wendell发布了新的文献求助10
10秒前
10秒前
项阑悦完成签到,获得积分10
11秒前
无骨鸡爪不长胖完成签到,获得积分10
11秒前
11秒前
monned完成签到 ,获得积分10
12秒前
冉景平完成签到 ,获得积分10
12秒前
12秒前
嘻嘻发布了新的文献求助10
13秒前
领导范儿应助Refuel采纳,获得10
13秒前
义气青丝发布了新的文献求助10
15秒前
名不显时心不朽完成签到,获得积分10
16秒前
乐乐乐发布了新的文献求助10
17秒前
林灏泽完成签到,获得积分10
17秒前
19秒前
20秒前
wanci应助Refuel采纳,获得10
21秒前
Wendell完成签到,获得积分10
21秒前
22秒前
完美世界应助wjw采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429