GPENs: Graph Data Learning With Graph Propagation-Embedding Networks

嵌入 图嵌入 理论计算机科学 计算机科学 特征学习 图形 拓扑图论 人工智能 电压图 折线图
作者
Bo Jiang,Leiling Wang,Jian Cheng,Jin Tang,Bin Luo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 3925-3938 被引量:1
标识
DOI:10.1109/tnnls.2021.3120100
摘要

Compact representation of graph data is a fundamental problem in pattern recognition and machine learning area. Recently, graph neural networks (GNNs) have been widely studied for graph-structured data representation and learning tasks, such as graph semi-supervised learning, clustering, and low-dimensional embedding. In this article, we present graph propagation-embedding networks (GPENs), a new model for graph-structured data representation and learning problem. GPENs are mainly motivated by 1) revisiting of traditional graph propagation techniques for graph node context-aware feature representation and 2) recent studies on deeply graph embedding and neural network architecture. GPENs integrate both feature propagation on graph and low-dimensional embedding simultaneously into a unified network using a novel propagation-embedding architecture. GPENs have two main advantages. First, GPENs can be well-motivated and explained from feature propagation and deeply learning architecture. Second, the equilibrium representation of the propagation-embedding operation in GPENs has both exact and approximate formulations, both of which have simple closed-form solutions. This guarantees the compactivity and efficiency of GPENs. Third, GPENs can be naturally extended to multiple GPENs (M-GPENs) to address the data with multiple graph structures. Experiments on various semi-supervised learning tasks on several benchmark datasets demonstrate the effectiveness and benefits of the proposed GPENs and M-GPENs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咕咕发布了新的文献求助10
刚刚
1秒前
hh发布了新的文献求助10
1秒前
2秒前
2秒前
歪歪踢完成签到 ,获得积分10
3秒前
3秒前
OO圈圈发布了新的文献求助10
5秒前
快来拾糖完成签到 ,获得积分10
6秒前
清风完成签到 ,获得积分10
6秒前
AoAoo发布了新的文献求助10
7秒前
竹谕发布了新的文献求助10
7秒前
慕青应助徐涛采纳,获得10
8秒前
咸鱼细胞人完成签到 ,获得积分10
11秒前
白枫完成签到 ,获得积分10
12秒前
调研昵称发布了新的文献求助10
12秒前
12秒前
Melody发布了新的文献求助30
13秒前
13秒前
科目三应助Joseph_sss采纳,获得10
13秒前
张文卓完成签到,获得积分10
13秒前
14秒前
领导范儿应助美好斓采纳,获得10
14秒前
麦兜兜完成签到 ,获得积分10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
烟花应助科研通管家采纳,获得10
14秒前
Wizard完成签到,获得积分10
15秒前
暴躁的沂完成签到 ,获得积分10
15秒前
稳重飞飞完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
Wizard发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159701
求助须知:如何正确求助?哪些是违规求助? 2810654
关于积分的说明 7888962
捐赠科研通 2469692
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012