Dimensionless data-driven model for optimizing hole cleaning efficiency in daily drilling operations

无量纲量 钻探 钻井液 石油工程 海洋工程 钻屑 流量(数学) 工程类 计算流体力学 阻力 模拟 机械 数学 机械工程 几何学 航空航天工程 物理
作者
Mohamed Shafik Khaled,Muhammad Saad Khan,Hicham Ferroudji,Abinash Barooah,Mohammad Azizur Rahman,Ibrahim Hassan,A. R. Hasan
出处
期刊:Journal of Natural Gas Science and Engineering [Elsevier]
卷期号:96: 104315-104315 被引量:29
标识
DOI:10.1016/j.jngse.2021.104315
摘要

Poor cuttings transport in deviated wells limit drill rate, induce excessive torque and drag, or in severe cases result in a stuck pipe. This paper presents a generalized data-driven model that utilizes statistical techniques for optimizing hole cleaning efficiency under different drilling conditions in deviated and extended reach wells. For this purpose, the model is constructed based on three approaches including extensive experiments conducted in our flow loop of 5-m horizontal length (4.5in. × 2in.), a validated Computational Fluid Dynamics (CFD) model was developed, and experimental data were collected from the literature to develop a reliable predictive tool that can estimate cuttings concentration in deviated wells. The developed model utilized a non-linear regression method, and was trained with 75% of the gathered data and validated with the remaining 25% to ensure the capability of the proposed model for accurate estimation of cuttings accumulation under different conditions. Unique dimensionless parameters were developed to shift the model results from lab-scale to field-scale applications. Findings revealed that the developed model provides promising results in estimating cuttings accumulation in deviated wells (20–90° from vertical). Predicted points lay in between 30% error margin in most cases, and the relation between estimated and measured cuttings accumulation has an adjusted R2 = 0.9. The proposed model outperforms the Duan, and Song models and introduces new dimensionless parameters to characterize hole cleaning efficiency during daily operations. The developed model proves to be a robust tool for simulating cuttings transport in real-time, monitoring cuttings accumulation, improving drilling efficiency, and avoiding Non-Productive Time (NPT) related to hole cleaning issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岩新完成签到 ,获得积分10
刚刚
xiaogu完成签到,获得积分10
刚刚
Shawn完成签到,获得积分10
刚刚
研途顺利发布了新的文献求助10
1秒前
凯文完成签到,获得积分20
1秒前
gs完成签到,获得积分10
1秒前
dddd完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助yi采纳,获得10
1秒前
ALinaLi完成签到,获得积分10
1秒前
Doinb完成签到,获得积分10
2秒前
六叶草完成签到,获得积分10
2秒前
3秒前
111完成签到,获得积分10
3秒前
萧水白应助zzt采纳,获得10
4秒前
科研通AI2S应助BSDL采纳,获得10
4秒前
DXM完成签到 ,获得积分10
4秒前
Youngen完成签到,获得积分10
5秒前
5秒前
汉堡包应助Robin采纳,获得10
5秒前
cpli完成签到,获得积分10
6秒前
晓伟完成签到,获得积分10
7秒前
科研通AI2S应助ProfWang采纳,获得10
7秒前
Mr.Reese完成签到,获得积分10
7秒前
Yang完成签到,获得积分10
8秒前
科研通AI2S应助茶叶末子采纳,获得10
8秒前
Xiancai完成签到,获得积分10
8秒前
9秒前
chen完成签到,获得积分20
9秒前
hoy发布了新的文献求助10
9秒前
科目三应助等等采纳,获得10
9秒前
仙林AK47完成签到,获得积分10
9秒前
Someone应助东东呀采纳,获得10
10秒前
大方忆秋完成签到,获得积分10
10秒前
xiaozang完成签到,获得积分10
10秒前
Tingshan发布了新的文献求助10
10秒前
神勇的晟睿完成签到,获得积分10
10秒前
BSDL完成签到,获得积分20
11秒前
11秒前
sky发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147003
求助须知:如何正确求助?哪些是违规求助? 2798336
关于积分的说明 7827807
捐赠科研通 2454956
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565