Discriminating subclinical depression from major depression using multi-scale brain functional features: A radiomics analysis

亚临床感染 萧条(经济学) 心理学 医学 精神科 内科学 宏观经济学 经济
作者
Bo Zhang,Shuang Liu,Xiaoya Liu,Sitong Chen,Yufeng Ke,Shouliang Qi,Xinhua Wei,Dong Ming
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:297: 542-552 被引量:36
标识
DOI:10.1016/j.jad.2021.10.122
摘要

The diagnosis of subclinical depression (SD) currently relies exclusively on subjective clinical scores and structured interviews, which shares great similarities with major depression (MD) and increases the risk of misdiagnosis of SD and MD. This study aimed to develop a method of disease classification for SD and MD by resting-state functional features using radiomics strategy. Twenty-six SD, 36 MD subjects and 33 well-matched healthy controls (HC) were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI). A novel radiomics analysis was proposed to discriminate SD from MD. Multi-scale brain functional features were extracted to explore a comprehensive representation of functional characteristics. A two-level feature selection strategy and support vector machine (SVM) were employed for classification. The overall classification accuracy among SD, MD and HC groups was 84.21%. Particularly, the model excellently distinguished SD from MD with 96.77% accuracy, 100% sensitivity, and 92.31% specificity. Moreover, features with high discriminative power to distinguish SD from MD showed a strong association with default mode network, frontoparietal network, affective network, and visual network regions. The sample size was relatively small, which may limit the application in clinical translation to some extent. These findings demonstrated that a valid radiomics approach based on functional measures can discriminate SD from MD with a high classification performance, facilitating an objective and reliable diagnosis individually in clinical practice. Features with high discriminative power may provide insight into a profound understanding of the brain functional impairments and pathophysiology of SD and MD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助风中莫英采纳,获得10
1秒前
王睛完成签到 ,获得积分10
1秒前
BABY五齿完成签到,获得积分10
2秒前
乌乌完成签到,获得积分10
2秒前
Ryu完成签到,获得积分10
2秒前
lindoudou完成签到,获得积分10
3秒前
michael发布了新的文献求助10
3秒前
4秒前
英姑应助Scout采纳,获得10
4秒前
Ryu发布了新的文献求助10
4秒前
东邪西毒加任我行完成签到,获得积分10
4秒前
caleb完成签到 ,获得积分10
4秒前
4秒前
善良的饼干完成签到,获得积分20
5秒前
王雨薇发布了新的文献求助10
5秒前
科研小lese完成签到,获得积分10
5秒前
lalala发布了新的文献求助10
5秒前
6秒前
6秒前
浮游应助lindoudou采纳,获得10
6秒前
asdfzxcv应助若俗人采纳,获得10
6秒前
充电宝应助懵懂的采梦采纳,获得10
7秒前
大个应助zy采纳,获得10
7秒前
阿兰完成签到 ,获得积分10
7秒前
7秒前
浮游应助淡然靖柔采纳,获得10
7秒前
典雅寻桃完成签到,获得积分20
8秒前
Moudexiao完成签到 ,获得积分10
8秒前
CipherSage应助xyy102采纳,获得10
8秒前
花花完成签到,获得积分10
8秒前
jbq发布了新的文献求助10
8秒前
秋天的雪完成签到,获得积分10
8秒前
风中莫英发布了新的文献求助10
9秒前
hh完成签到,获得积分10
9秒前
呆萌安双完成签到 ,获得积分10
9秒前
帅气的杰瑞完成签到,获得积分10
9秒前
屁特完成签到,获得积分10
10秒前
ccboom完成签到,获得积分10
10秒前
tutu完成签到 ,获得积分20
10秒前
Li完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645317
求助须知:如何正确求助?哪些是违规求助? 4768461
关于积分的说明 15028063
捐赠科研通 4803918
什么是DOI,文献DOI怎么找? 2568536
邀请新用户注册赠送积分活动 1525881
关于科研通互助平台的介绍 1485508