Discriminating subclinical depression from major depression using multi-scale brain functional features: A radiomics analysis

亚临床感染 萧条(经济学) 心理学 医学 精神科 内科学 宏观经济学 经济
作者
Bo Zhang,Shuang Liu,Xiaoya Liu,Sitong Chen,Yufeng Ke,Shouliang Qi,Xinhua Wei,Dong Ming
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:297: 542-552 被引量:36
标识
DOI:10.1016/j.jad.2021.10.122
摘要

The diagnosis of subclinical depression (SD) currently relies exclusively on subjective clinical scores and structured interviews, which shares great similarities with major depression (MD) and increases the risk of misdiagnosis of SD and MD. This study aimed to develop a method of disease classification for SD and MD by resting-state functional features using radiomics strategy. Twenty-six SD, 36 MD subjects and 33 well-matched healthy controls (HC) were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI). A novel radiomics analysis was proposed to discriminate SD from MD. Multi-scale brain functional features were extracted to explore a comprehensive representation of functional characteristics. A two-level feature selection strategy and support vector machine (SVM) were employed for classification. The overall classification accuracy among SD, MD and HC groups was 84.21%. Particularly, the model excellently distinguished SD from MD with 96.77% accuracy, 100% sensitivity, and 92.31% specificity. Moreover, features with high discriminative power to distinguish SD from MD showed a strong association with default mode network, frontoparietal network, affective network, and visual network regions. The sample size was relatively small, which may limit the application in clinical translation to some extent. These findings demonstrated that a valid radiomics approach based on functional measures can discriminate SD from MD with a high classification performance, facilitating an objective and reliable diagnosis individually in clinical practice. Features with high discriminative power may provide insight into a profound understanding of the brain functional impairments and pathophysiology of SD and MD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕噜完成签到 ,获得积分10
2秒前
晶莹黎完成签到,获得积分10
2秒前
3秒前
顾矜应助Una采纳,获得10
4秒前
4秒前
7秒前
12秒前
xbb88完成签到,获得积分10
13秒前
哈哈哈哈完成签到 ,获得积分10
13秒前
DCBA发布了新的文献求助10
14秒前
斯文的薯片完成签到,获得积分10
15秒前
沈颜完成签到,获得积分10
16秒前
16秒前
超超zzZ完成签到,获得积分10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
16秒前
所所应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
wy.he应助科研通管家采纳,获得10
17秒前
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
17秒前
Una发布了新的文献求助10
17秒前
18秒前
喜悦的依琴完成签到,获得积分10
18秒前
充电宝应助WWZ采纳,获得10
18秒前
brave heart完成签到,获得积分10
20秒前
21秒前
21秒前
此时此刻完成签到,获得积分10
23秒前
11完成签到,获得积分10
25秒前
今后应助小鱼采纳,获得10
25秒前
25秒前
jelly10应助燕子采纳,获得50
26秒前
小马甲应助虚心沂采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259101
求助须知:如何正确求助?哪些是违规求助? 4420900
关于积分的说明 13761392
捐赠科研通 4294658
什么是DOI,文献DOI怎么找? 2356512
邀请新用户注册赠送积分活动 1352924
关于科研通互助平台的介绍 1313807