A deep-learning method for generating synthetic kV-CT and improving tumor segmentation for helical tomotherapy of nasopharyngeal carcinoma

成像体模 断层治疗 图像质量 核医学 对比噪声比 分割 医学 放射治疗 人工智能 计算机科学 放射科 图像(数学)
作者
Xinyuan Chen,Baiyu Yang,Jingwen Li,Ji Zhu,Xiangyu Ma,Deqi Chen,Zhihui Hu,Kuo Men,Jianrong Dai
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (22): 224001-224001 被引量:8
标识
DOI:10.1088/1361-6560/ac3345
摘要

Objective:Megavoltage computed tomography (MV-CT) is used for setup verification and adaptive radiotherapy in tomotherapy. However, its low contrast and high noise lead to poor image quality. This study aimed to develop a deep-learning-based method to generate synthetic kilovoltage CT (skV-CT) and then evaluate its ability to improve image quality and tumor segmentation.Approach:The planning kV-CT and MV-CT images of 270 patients with nasopharyngeal carcinoma (NPC) treated on an Accuray TomoHD system were used. An improved cycle-consistent adversarial network which used residual blocks as its generator was adopted to learn the mapping between MV-CT and kV-CT and then generate skV-CT from MV-CT. A Catphan 700 phantom and 30 patients with NPC were used to evaluate image quality. The quantitative indices included contrast-to-noise ratio (CNR), uniformity and signal-to-noise ratio (SNR) for the phantom and the structural similarity index measure (SSIM), mean absolute error (MAE), and peak signal-to-noise ratio (PSNR) for patients. Next, we trained three models for segmentation of the clinical target volume (CTV): MV-CT, skV-CT, and MV-CT combined with skV-CT. The segmentation accuracy was compared with indices of the dice similarity coefficient (DSC) and mean distance agreement (MDA).Mainresults:Compared with MV-CT, skV-CT showed significant improvement in CNR (184.0%), image uniformity (34.7%), and SNR (199.0%) in the phantom study and improved SSIM (1.7%), MAE (24.7%), and PSNR (7.5%) in the patient study. For CTV segmentation with only MV-CT, only skV-CT, and MV-CT combined with skV-CT, the DSCs were 0.75 ± 0.04, 0.78 ± 0.04, and 0.79 ± 0.03, respectively, and the MDAs (in mm) were 3.69 ± 0.81, 3.14 ± 0.80, and 2.90 ± 0.62, respectively.Significance:The proposed method improved the image quality of MV-CT and thus tumor segmentation in helical tomotherapy. The method potentially can benefit adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang001完成签到,获得积分10
刚刚
沉默发布了新的文献求助10
1秒前
外向灰狼完成签到 ,获得积分10
2秒前
从容的无极应助xhptzw采纳,获得10
4秒前
蛋妞发布了新的文献求助10
4秒前
爆米花应助傲娇小废柴采纳,获得10
5秒前
5秒前
自觉芝麻完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
liars发布了新的文献求助10
9秒前
VV2001完成签到,获得积分10
11秒前
super chan发布了新的文献求助10
12秒前
12秒前
桂花酒酿发布了新的文献求助10
12秒前
小谷发布了新的文献求助10
13秒前
ren应助心心采纳,获得10
16秒前
16秒前
16秒前
17秒前
思源应助lyyyy采纳,获得10
17秒前
关中人完成签到,获得积分10
18秒前
20秒前
Reader01完成签到 ,获得积分10
21秒前
坚强的寒风完成签到 ,获得积分10
21秒前
田様应助当当采纳,获得10
23秒前
rous发布了新的文献求助10
23秒前
一米阳光发布了新的文献求助10
24秒前
我唉科研完成签到,获得积分10
24秒前
Edward发布了新的文献求助10
25秒前
傲娇小废柴完成签到,获得积分10
26秒前
CodeCraft应助super chan采纳,获得10
27秒前
小药丸完成签到,获得积分10
28秒前
31秒前
31秒前
31秒前
31秒前
Christine完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461273
求助须知:如何正确求助?哪些是违规求助? 3054977
关于积分的说明 9045885
捐赠科研通 2744911
什么是DOI,文献DOI怎么找? 1505727
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233