Upper endoscopy photodocumentation quality evaluation with novel deep learning system

医学 内窥镜检查 十二指肠 食管 内窥镜 放射科 普通外科 外科
作者
Yuan‐Yen Chang,Hsu‐Heng Yen,Pai‐Chi Li,Ruey‐Feng Chang,Chia Wei Yang,Yang‐Yuan Chen,Wen‐Yen Chang
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:34 (5): 994-1001 被引量:11
标识
DOI:10.1111/den.14179
摘要

Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem.A deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate.A total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates.We report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年发布了新的文献求助10
1秒前
3秒前
6秒前
canjian1943发布了新的文献求助10
7秒前
8秒前
9秒前
www发布了新的文献求助10
9秒前
10秒前
繁荣的过客完成签到 ,获得积分10
10秒前
10秒前
bkagyin应助ghost采纳,获得10
11秒前
12秒前
12秒前
12秒前
MM发布了新的文献求助20
13秒前
13秒前
鹏程完成签到 ,获得积分10
14秒前
24关注了科研通微信公众号
15秒前
16秒前
秋雅发布了新的文献求助10
17秒前
叙温雨发布了新的文献求助10
17秒前
怀良辰完成签到,获得积分10
18秒前
超级的友绿完成签到,获得积分10
18秒前
zyz完成签到,获得积分10
18秒前
20秒前
无花果应助仁爱发卡采纳,获得10
22秒前
orixero应助王仙人采纳,获得10
22秒前
22秒前
23秒前
唯有发布了新的文献求助30
23秒前
zzz发布了新的文献求助10
25秒前
只只完成签到 ,获得积分20
26秒前
美好斓发布了新的文献求助30
26秒前
2014689032应助kento采纳,获得50
29秒前
王仙人完成签到,获得积分10
31秒前
31秒前
24发布了新的文献求助10
33秒前
泡芙完成签到 ,获得积分10
33秒前
xingqing完成签到 ,获得积分10
35秒前
共享精神应助秋雅采纳,获得10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149259
求助须知:如何正确求助?哪些是违规求助? 2800349
关于积分的说明 7839651
捐赠科研通 2457913
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706