Deep Learning-Based Phenotypic Assessment of Red Cell Storage Lesions for Safe Transfusions

深度学习 人工智能 分割 计算机科学 Sørensen–骰子系数 图像分割 模式识别(心理学) 人工神经网络 计算机视觉
作者
Eunji Kim,Seonghwan Park,Seunghyeon Hwang,Inkyu Moon,Bahram Javidi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (3): 1318-1328 被引量:15
标识
DOI:10.1109/jbhi.2021.3104650
摘要

This study presents a novel approach to automatically perform instant phenotypic assessment of red blood cell (RBC) storage lesion in phase images obtained by digital holographic microscopy. The proposed model combines a generative adversarial network (GAN) with marker-controlled watershed segmentation scheme. The GAN model performed RBC segmentations and classifications to develop ageing markers, and the watershed segmentation was used to completely separate overlapping RBCs. Our approach achieved good segmentation and classification accuracy with a Dice's coefficient of 0.94 at a high throughput rate of about 152 cells per second. These results were compared with other deep neural network architectures. Moreover, our image-based deep learning models recognized the morphological changes that occur in RBCs during storage. Our deep learning-based classification results were in good agreement with previous findings on the changes in RBC markers (dominant shapes) affected by storage duration. We believe that our image-based deep learning models can be useful for automated assessment of RBC quality, storage lesions for safe transfusions, and diagnosis of RBC-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助hu970采纳,获得10
刚刚
刚刚
艺玲发布了新的文献求助10
1秒前
咚咚咚完成签到,获得积分10
1秒前
芋圆Z.完成签到,获得积分10
1秒前
atad2发布了新的文献求助10
1秒前
li梨完成签到,获得积分10
1秒前
2秒前
晏小敏完成签到,获得积分10
2秒前
爆米花应助风中寄云采纳,获得10
3秒前
屹舟发布了新的文献求助10
3秒前
Dou完成签到,获得积分10
3秒前
白泯完成签到,获得积分10
4秒前
1ssd发布了新的文献求助10
4秒前
667发布了新的文献求助10
4秒前
小二郎应助辰柒采纳,获得10
5秒前
6秒前
6秒前
clear完成签到,获得积分20
6秒前
6秒前
orixero应助congguitar采纳,获得10
6秒前
Evan完成签到,获得积分10
6秒前
YANG发布了新的文献求助10
7秒前
7秒前
123发布了新的文献求助10
7秒前
sunzhiyu233发布了新的文献求助10
8秒前
Raul完成签到 ,获得积分10
8秒前
8秒前
伯尔尼圆白菜完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
buuyoo完成签到,获得积分10
9秒前
科研通AI5应助魏煜佳采纳,获得10
9秒前
LLxiaolong完成签到,获得积分10
9秒前
10秒前
10秒前
巨噬细胞A完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759