亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI radiomics to differentiate between low grade glioma and glioblastoma peritumoral region

无线电技术 胶质母细胞瘤 特征选择 流体衰减反转恢复 胶质瘤 医学 磁共振成像 高强度 肿瘤分级 人工智能 模式识别(心理学) 放射科 核医学 计算机科学 病理 免疫组织化学 癌症研究
作者
Nauman Malik,Benjamin Geraghty,Archya Dasgupta,Pejman Maralani,Michael Sandhu,Jay Detsky,Chia‐Lin Tseng,Hany Soliman,Sten Myrehaug,Zain Husain,James Perry,Angus Z. Lau,Arjun Sahgal,Gregory J. Czarnota
出处
期刊:Journal of Neuro-oncology [Springer Nature]
卷期号:155 (2): 181-191 被引量:35
标识
DOI:10.1007/s11060-021-03866-9
摘要

The peritumoral region (PTR) of glioblastoma (GBM) appears as a T2W-hyperintensity and is composed of microscopic tumor and edema. Infiltrative low grade glioma (LGG) comprises tumor cells that seem similar to GBM PTR on MRI. The work here explored if a radiomics-based approach can distinguish between the two groups (tumor and edema versus tumor alone).Patients with GBM and LGG imaged using a 1.5 T MRI were included in the study. Image data from cases of GBM PTR, and LGG were manually segmented guided by T2W hyperintensity. A set of 91 first-order and texture features were determined from each of T1W-contrast, and T2W-FLAIR, diffusion-weighted imaging sequences. Applying filtration techniques, a total of 3822 features were obtained. Different feature reduction techniques were employed, and a subsequent model was constructed using four machine learning classifiers. Leave-one-out cross-validation was used to assess classifier performance.The analysis included 42 GBM and 36 LGG. The best performance was obtained using AdaBoost classifier using all the features with a sensitivity, specificity, accuracy, and area of curve (AUC) of 91%, 86%, 89%, and 0.96, respectively. Amongst the feature selection techniques, the recursive feature elimination technique had the best results, with an AUC ranging from 0.87 to 0.92. Evaluation with the F-test resulted in the most consistent feature selection with 3 T1W-contrast texture features chosen in over 90% of instances.Quantitative analysis of conventional MRI sequences can effectively demarcate GBM PTR from LGG, which is otherwise indistinguishable on visual estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
冬去春来完成签到 ,获得积分10
24秒前
Jasper应助枯藤老柳树采纳,获得30
27秒前
酷波er应助帮帮我好吗采纳,获得10
31秒前
1分钟前
1分钟前
科研通AI2S应助白华苍松采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
zhouleiwang发布了新的文献求助10
2分钟前
poki完成签到 ,获得积分10
2分钟前
2分钟前
OCDer发布了新的文献求助10
2分钟前
清爽玉米完成签到,获得积分10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
皮老师发布了新的文献求助200
5分钟前
合不着完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
风起枫落完成签到 ,获得积分10
5分钟前
5分钟前
科研一枝花完成签到 ,获得积分10
6分钟前
6分钟前
皮老师完成签到,获得积分10
6分钟前
wanci应助帮帮我好吗采纳,获得10
7分钟前
7分钟前
7分钟前
Lucas应助Scrat采纳,获得10
8分钟前
Olivia发布了新的文献求助30
8分钟前
8分钟前
小蘑菇应助帮帮我好吗采纳,获得10
9分钟前
9分钟前
zoelir729发布了新的文献求助10
9分钟前
9分钟前
9分钟前
传奇3应助帮帮我好吗采纳,获得10
10分钟前
10分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997