氢铵
锐钛矿
阳极
电解质
质子
电池(电)
离子
材料科学
阴极
密度泛函理论
化学物理
电化学
氢
化学工程
电极
物理化学
化学
计算化学
光催化
催化作用
热力学
有机化学
工程类
功率(物理)
物理
生物化学
量子力学
作者
Chao Geng,Tulai Sun,Zhencui Wang,Jin‐Ming Wu,Yi‐Jie Gu,Hisayoshi Kobayashi,Peng Yang,Jianhang Hai,Wei Wen
出处
期刊:Nano Letters
[American Chemical Society]
日期:2021-08-09
卷期号:21 (16): 7021-7029
被引量:44
标识
DOI:10.1021/acs.nanolett.1c02421
摘要
Hydrogen ion is an attractive charge carrier for energy storage due to its smallest radius. However, hydrogen ions usually exist in the form of hydronium ion (H3O+) because of its high dehydration energy; the choice of electrode materials is thus greatly limited to open frameworks and layered structures with large ionic channels. Here, the desolvation of H3O+ is achieved by using anatase TiO2 as anodes, enabling the H+ intercalation with a strain-free characteristic. Density functional theory calculations show that the desolvation effects are dependent on the facets of anatase TiO2. Anatase TiO2 (001) surface, a highly reactive surface, impels the desolvation of H3O+ into H+. When coupled with a MnO2 cathode, the proton battery delivers a high specific energy of 143.2 Wh/kg at an ultrahigh specific power of 47.9 kW/kg. The modulation of the interactions between ions and electrodes opens new perspectives for battery optimizations.
科研通智能强力驱动
Strongly Powered by AbleSci AI