Morlet小波
检出限
噪音(视频)
生物传感器
小波
材料科学
降噪
干扰(通信)
光学
计算机科学
小波变换
纳米技术
人工智能
物理
离散小波变换
电信
数学
图像(数学)
统计
频道(广播)
作者
Simon J. Ward,Rabeb Layouni,Sofia Arshavsky‐Graham,Ester Segal,Sharon M. Weiss
出处
期刊:ACS Sensors
[American Chemical Society]
日期:2021-08-13
卷期号:6 (8): 2967-2978
被引量:21
标识
DOI:10.1021/acssensors.1c00787
摘要
The ultimate detection limit of optical biosensors is often limited by various noise sources, including those introduced by the optical measurement setup. While sophisticated modifications to instrumentation may reduce noise, a simpler approach that can benefit all sensor platforms is the application of signal processing to minimize the deleterious effects of noise. In this work, we show that applying complex Morlet wavelet convolution to Fabry-Pérot interference fringes characteristic of thin film reflectometric biosensors effectively filters out white noise and low-frequency reflectance variations. Subsequent calculation of the average difference in extracted phase between the filtered analyte and reference signals enables a significant reduction in the limit of detection (LOD). This method is applied on experimental data sets of thin film porous silicon sensors (PSi) in buffered solution and complex media obtained from two different laboratories. The demonstrated improvement in the LOD achieved using wavelet convolution and average phase difference paves the way for PSi optical biosensors to operate with clinically relevant detection limits for medical diagnostics, environmental monitoring, and food safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI