清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Edge-competing Pathological Liver Vessel Segmentation with Limited Labels

分割 人工智能 计算机科学 肝细胞癌 图像分割 模式识别(心理学) GSM演进的增强数据速率 病态的 计算机视觉 医学 病理 癌症研究
作者
Zunlei Feng,Zhonghua Wang,Xinchao Wang,Xiuming Zhang,Lechao Cheng,Jie Lei,Yuexuan Wang,Mingli Song
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (2): 1325-1333 被引量:12
标识
DOI:10.1609/aaai.v35i2.16221
摘要

The microvascular invasion (MVI) is a major prognostic factor in hepatocellular carcinoma, which is one of the malignant tumors with the highest mortality rate. The diagnosis of MVI needs discovering the vessels that contain hepatocellular carcinoma cells and counting their number in each vessel, which depends heavily on experiences of the doctor, is largely subjective and time-consuming. However, there is no algorithm as yet tailored for the MVI detection from pathological images. This paper collects the first pathological liver image dataset containing $522$ whole slide images with labels of vessels, MVI, and hepatocellular carcinoma grades. The first and essential step for the automatic diagnosis of MVI is the accurate segmentation of vessels. The unique characteristics of pathological liver images, such as super-large size, multi-scale vessel, and blurred vessel edges, make the accurate vessel segmentation challenging. Based on the collected dataset, we propose an Edge-competing Vessel Segmentation Network (EVS-Net), which contains a segmentation network and two edge segmentation discriminators. The segmentation network, combined with an edge-aware self-supervision mechanism, is devised to conduct vessel segmentation with limited labeled patches. Meanwhile, two discriminators are introduced to distinguish whether the segmented vessel and background contain residual features in an adversarial manner. In the training stage, two discriminators are devised to compete for the predicted position of edges. Exhaustive experiments demonstrate that, with only limited labeled patches, EVS-Net achieves a close performance of fully supervised methods, which provides a convenient tool for the pathological liver vessel segmentation. Code is publicly available at https://github.com/wang97zh/EVS-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
14秒前
33秒前
追寻青柏完成签到,获得积分10
53秒前
1分钟前
1分钟前
爱听歌契完成签到 ,获得积分10
1分钟前
拓跋雨梅完成签到 ,获得积分0
1分钟前
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
2分钟前
赵先生发布了新的文献求助10
2分钟前
qq完成签到 ,获得积分10
2分钟前
wwe完成签到,获得积分10
2分钟前
2分钟前
壮观的谷冬完成签到 ,获得积分10
2分钟前
乔杰完成签到 ,获得积分10
3分钟前
3分钟前
Andy_2024完成签到,获得积分10
3分钟前
紫熊发布了新的文献求助50
3分钟前
3分钟前
3分钟前
3分钟前
花花521完成签到,获得积分10
4分钟前
zcbb完成签到,获得积分10
4分钟前
萨尔莫斯完成签到,获得积分10
4分钟前
mashibeo完成签到,获得积分10
5分钟前
赵先生完成签到 ,获得积分10
5分钟前
点点白帆完成签到,获得积分10
5分钟前
Guo完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
Momo发布了新的文献求助10
6分钟前
Akim应助咸鱼王采纳,获得10
6分钟前
魔幻的妖丽完成签到 ,获得积分10
6分钟前
7分钟前
紫熊发布了新的文献求助30
7分钟前
暴躁的老哥应助机灵自中采纳,获得10
7分钟前
咸鱼王发布了新的文献求助10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054407
关于积分的说明 9042000
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505283
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887