亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods

摩擦学 材料科学 石墨 复合材料 极限抗拉强度 机器学习 支持向量机 碳化硅 计算机科学
作者
Md Syam Hasan,Amir Kordijazi,Pradeep K. Rohatgi,Michael Nosonovsky
出处
期刊:Journal of tribology [ASME International]
卷期号:144 (1) 被引量:68
标识
DOI:10.1115/1.4050525
摘要

Abstract Data-driven analysis and machine learning (ML) algorithms can offer novel insights into tribological phenomena by establishing correlations between material and tribological properties. We developed ML algorithms using tribological data available in the literature for predicting the coefficient of friction (COF) and wear-rate of self-lubricating aluminum graphite (Al/Gr) composites. We collected data on effects of material variables (graphite content, hardness, ductility, yield strength, silicon carbide content, and tensile strength), processing procedure, heat treatment and tribological test variables (normal load, sliding speed, and sliding distance) on tribological properties and established two-parameter relationships. These data are analyzed using several ML algorithms: artificial neural network (ANN), K nearest neighbor (KNN), support vector machine (SVM), gradient boosting machine (GBM), and random forest (RF). The trained ML models can predict the tribological behavior from material variables and test conditions, beyond what is possible from two-parameter correlations. GBM outperformed other ML algorithms in predicting friction behavior, while RF had the best prediction of the wear behavior. ML analysis identified graphite content and hardness and as the most significant variables in predicting the COF, while graphite content and sliding speed were the most dominant variables for wear-rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋杰应助辣手摧花526采纳,获得20
52秒前
57秒前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
罗钦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
laa发布了新的文献求助10
1分钟前
2分钟前
2分钟前
深情安青应助laa采纳,获得10
2分钟前
2分钟前
阿童木完成签到 ,获得积分10
2分钟前
3分钟前
Criminology34应助科研通管家采纳,获得20
3分钟前
Criminology34应助科研通管家采纳,获得20
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得20
3分钟前
3分钟前
吼吼哈嘿完成签到 ,获得积分10
3分钟前
orixero应助dllneu采纳,获得10
4分钟前
倩倩完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
浮游应助Cedric采纳,获得10
6分钟前
时间煮雨我煮鱼完成签到,获得积分10
6分钟前
7分钟前
8分钟前
Double发布了新的文献求助10
8分钟前
忧心的从蓉完成签到,获得积分10
8分钟前
8分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346630
求助须知:如何正确求助?哪些是违规求助? 4481113
关于积分的说明 13947295
捐赠科研通 4379029
什么是DOI,文献DOI怎么找? 2406149
邀请新用户注册赠送积分活动 1398713
关于科研通互助平台的介绍 1371523