Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods

摩擦学 材料科学 石墨 复合材料 极限抗拉强度 机器学习 支持向量机 碳化硅 计算机科学
作者
Md Syam Hasan,Amir Kordijazi,Pradeep K. Rohatgi,Michael Nosonovsky
出处
期刊:Journal of tribology [ASM International]
卷期号:144 (1) 被引量:68
标识
DOI:10.1115/1.4050525
摘要

Abstract Data-driven analysis and machine learning (ML) algorithms can offer novel insights into tribological phenomena by establishing correlations between material and tribological properties. We developed ML algorithms using tribological data available in the literature for predicting the coefficient of friction (COF) and wear-rate of self-lubricating aluminum graphite (Al/Gr) composites. We collected data on effects of material variables (graphite content, hardness, ductility, yield strength, silicon carbide content, and tensile strength), processing procedure, heat treatment and tribological test variables (normal load, sliding speed, and sliding distance) on tribological properties and established two-parameter relationships. These data are analyzed using several ML algorithms: artificial neural network (ANN), K nearest neighbor (KNN), support vector machine (SVM), gradient boosting machine (GBM), and random forest (RF). The trained ML models can predict the tribological behavior from material variables and test conditions, beyond what is possible from two-parameter correlations. GBM outperformed other ML algorithms in predicting friction behavior, while RF had the best prediction of the wear behavior. ML analysis identified graphite content and hardness and as the most significant variables in predicting the COF, while graphite content and sliding speed were the most dominant variables for wear-rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaTeXer给积极行天的求助进行了留言
1秒前
ww发布了新的文献求助10
1秒前
Carlo完成签到,获得积分10
2秒前
蓝胖子完成签到 ,获得积分10
3秒前
4秒前
终生科研徒刑完成签到 ,获得积分10
4秒前
5秒前
ysc发布了新的文献求助20
7秒前
8秒前
LKX完成签到 ,获得积分10
8秒前
纯真的诗兰完成签到,获得积分10
9秒前
自然函完成签到 ,获得积分10
9秒前
等一个晴天完成签到,获得积分10
10秒前
as发布了新的文献求助100
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
个性元枫应助科研通管家采纳,获得10
10秒前
kingwill应助科研通管家采纳,获得20
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
11秒前
海东来应助科研通管家采纳,获得30
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
个性元枫应助科研通管家采纳,获得10
11秒前
茕凡桃七完成签到,获得积分10
11秒前
大个应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得30
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
ding应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048