Identification of different bran-fried Atractylodis Rhizoma and prediction of atractylodin content based on multivariate data mining combined with intelligent color recognition and near-infrared spectroscopy

麸皮 近红外光谱 鉴定(生物学) 多元统计 人工智能 模式识别(心理学) 化学 计算机科学 机器学习 物理 植物 光学 生物 有机化学 原材料
作者
Lin Lei,Chang Ke,Kunyu Xiao,Linghang Qu,Lin Xiong,Xin Zhan,Jiyuan Tu,Kang Xu,Yanju Liu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:262: 120119-120119 被引量:24
标识
DOI:10.1016/j.saa.2021.120119
摘要

Unclear established standard of bran-fried Atractylodis Rhizoma (BFAR), a commonly used drug in Traditional Chinese Medicine (TCM), compromised its clinical efficacy. In this study, we explored the correlation between color and near-infrared spectroscopy (NIR) feature with content of atractylodin, then established a rapid recognition model for the optimal degree of processing for BFAR preparation. The results of the Pearson analysis indicated that the color values were significantly and positively correlated with atractylodin content. The back propagation artificial neural network algorithm and cluster analysis revealed the color of different BFAR could be accurately divided into three categories; subsequently, the color range for the optimal degrees of stir-frying was established as follows: R[red value (105.79–127.25)], G[green value(75.84–89.64)], B[blue value(33.33–42.73)], L[Lightness (81.26–95.09)].Using NIR, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and cluster analysis, three types of BFAR were accurately identified. The prediction model of atractylodin content was established using partial least squares regression analysis. The R2 of the validation set was 0.9717 and the root mean square error was 0.026. In the color judgment model, the processing degree of 8 batches of BFAR from the market is inferior. According to the NIR judgment model, the processing degree of all samples from the market is inferior. In conclusion, the best fire degree of BFAR can be identified quickly and accurately based on our established model. It is a potential method for quality evaluation of Chinese Materia Medica processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddfighting完成签到,获得积分10
3秒前
科研通AI2S应助陈佳欣采纳,获得10
5秒前
蓝天发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
9秒前
CipherSage应助谨慎的寒松采纳,获得10
9秒前
humble完成签到,获得积分10
9秒前
可爱的函函应助2023204306324采纳,获得10
10秒前
科研通AI6.1应助体贴雪碧采纳,获得10
11秒前
12秒前
zwj完成签到,获得积分10
13秒前
拉哈80应助pyp采纳,获得10
14秒前
15秒前
xuqiansd完成签到,获得积分10
16秒前
HEHNJJ完成签到,获得积分10
16秒前
17秒前
酷波er应助刘培恒采纳,获得30
17秒前
spc68应助儒雅HR采纳,获得10
17秒前
17秒前
成就小蜜蜂完成签到 ,获得积分10
17秒前
掮客完成签到,获得积分10
17秒前
nihaolaojiu发布了新的文献求助30
18秒前
18秒前
多情新蕾发布了新的文献求助10
18秒前
lili完成签到,获得积分20
19秒前
19秒前
科研通AI6.1应助czz采纳,获得10
20秒前
21秒前
lili发布了新的文献求助10
23秒前
24秒前
27秒前
科研人X完成签到,获得积分10
27秒前
koui完成签到 ,获得积分10
28秒前
韶华若锦完成签到 ,获得积分10
29秒前
刘培恒发布了新的文献求助30
29秒前
CHENGJIAO完成签到,获得积分20
29秒前
量子星尘发布了新的文献求助10
30秒前
man完成签到,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737037
求助须知:如何正确求助?哪些是违规求助? 5370241
关于积分的说明 15334617
捐赠科研通 4880797
什么是DOI,文献DOI怎么找? 2622998
邀请新用户注册赠送积分活动 1571878
关于科研通互助平台的介绍 1528721