Identification of different bran-fried Atractylodis Rhizoma and prediction of atractylodin content based on multivariate data mining combined with intelligent color recognition and near-infrared spectroscopy

麸皮 近红外光谱 鉴定(生物学) 多元统计 人工智能 模式识别(心理学) 化学 计算机科学 机器学习 物理 植物 光学 生物 有机化学 原材料
作者
Lin Lei,Chang Ke,Kunyu Xiao,Linghang Qu,Lin Xiong,Xin Zhan,Jiyuan Tu,Kang Xu,Yanju Liu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:262: 120119-120119 被引量:22
标识
DOI:10.1016/j.saa.2021.120119
摘要

Unclear established standard of bran-fried Atractylodis Rhizoma (BFAR), a commonly used drug in Traditional Chinese Medicine (TCM), compromised its clinical efficacy. In this study, we explored the correlation between color and near-infrared spectroscopy (NIR) feature with content of atractylodin, then established a rapid recognition model for the optimal degree of processing for BFAR preparation. The results of the Pearson analysis indicated that the color values were significantly and positively correlated with atractylodin content. The back propagation artificial neural network algorithm and cluster analysis revealed the color of different BFAR could be accurately divided into three categories; subsequently, the color range for the optimal degrees of stir-frying was established as follows: R[red value (105.79–127.25)], G[green value(75.84–89.64)], B[blue value(33.33–42.73)], L[Lightness (81.26–95.09)].Using NIR, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and cluster analysis, three types of BFAR were accurately identified. The prediction model of atractylodin content was established using partial least squares regression analysis. The R2 of the validation set was 0.9717 and the root mean square error was 0.026. In the color judgment model, the processing degree of 8 batches of BFAR from the market is inferior. According to the NIR judgment model, the processing degree of all samples from the market is inferior. In conclusion, the best fire degree of BFAR can be identified quickly and accurately based on our established model. It is a potential method for quality evaluation of Chinese Materia Medica processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RYAN发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
SSS发布了新的文献求助10
2秒前
Steven发布了新的文献求助10
3秒前
小蘑菇应助fuje采纳,获得10
4秒前
ding应助fuje采纳,获得10
4秒前
Jasper应助fuje采纳,获得10
4秒前
灵巧的傲丝完成签到,获得积分10
4秒前
5秒前
pyg完成签到,获得积分10
5秒前
gujianhua发布了新的文献求助10
5秒前
5秒前
515完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
9秒前
10秒前
10秒前
arui发布了新的文献求助10
10秒前
咩咩咩发布了新的文献求助10
12秒前
12秒前
13秒前
zeroZWY完成签到,获得积分10
13秒前
刘佳会完成签到,获得积分20
15秒前
谈舒怡发布了新的文献求助10
15秒前
Hexagram发布了新的文献求助10
16秒前
飞奔向你发布了新的文献求助30
16秒前
17秒前
刘佳会发布了新的文献求助10
18秒前
SciGPT应助学术丁真采纳,获得10
18秒前
18秒前
Orange应助winna采纳,获得10
20秒前
辛勤的乌发布了新的文献求助10
22秒前
酷波er应助HXY采纳,获得200
22秒前
哈哈哈发布了新的文献求助10
23秒前
华仔应助夏天采纳,获得10
26秒前
星辰大海应助沉海采纳,获得30
27秒前
shbkmy发布了新的文献求助30
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516