Identification of different bran-fried Atractylodis Rhizoma and prediction of atractylodin content based on multivariate data mining combined with intelligent color recognition and near-infrared spectroscopy

麸皮 近红外光谱 鉴定(生物学) 多元统计 人工智能 模式识别(心理学) 化学 计算机科学 机器学习 物理 植物 光学 生物 有机化学 原材料
作者
Lin Lei,Chang Ke,Kunyu Xiao,Linghang Qu,Lin Xiong,Xin Zhan,Jiyuan Tu,Kang Xu,Yanju Liu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:262: 120119-120119 被引量:18
标识
DOI:10.1016/j.saa.2021.120119
摘要

Unclear established standard of bran-fried Atractylodis Rhizoma (BFAR), a commonly used drug in Traditional Chinese Medicine (TCM), compromised its clinical efficacy. In this study, we explored the correlation between color and near-infrared spectroscopy (NIR) feature with content of atractylodin, then established a rapid recognition model for the optimal degree of processing for BFAR preparation. The results of the Pearson analysis indicated that the color values were significantly and positively correlated with atractylodin content. The back propagation artificial neural network algorithm and cluster analysis revealed the color of different BFAR could be accurately divided into three categories; subsequently, the color range for the optimal degrees of stir-frying was established as follows: R[red value (105.79–127.25)], G[green value(75.84–89.64)], B[blue value(33.33–42.73)], L[Lightness (81.26–95.09)].Using NIR, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and cluster analysis, three types of BFAR were accurately identified. The prediction model of atractylodin content was established using partial least squares regression analysis. The R2 of the validation set was 0.9717 and the root mean square error was 0.026. In the color judgment model, the processing degree of 8 batches of BFAR from the market is inferior. According to the NIR judgment model, the processing degree of all samples from the market is inferior. In conclusion, the best fire degree of BFAR can be identified quickly and accurately based on our established model. It is a potential method for quality evaluation of Chinese Materia Medica processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
小城楠发布了新的文献求助10
2秒前
哈哈里完成签到 ,获得积分10
4秒前
科研体育生完成签到 ,获得积分10
5秒前
yue发布了新的文献求助10
6秒前
xxx发布了新的文献求助10
6秒前
科研通AI2S应助别急我先送采纳,获得30
6秒前
nil驳回了所所应助
7秒前
7秒前
慕青应助小城楠采纳,获得10
7秒前
vincent完成签到 ,获得积分10
7秒前
xxx完成签到,获得积分20
12秒前
领导范儿应助Strongly采纳,获得10
12秒前
12秒前
haowu发布了新的文献求助80
13秒前
深情安青应助烟雨笙寒采纳,获得10
13秒前
炙热冰夏完成签到,获得积分10
13秒前
15秒前
别急我先送完成签到,获得积分10
17秒前
Dou_Xiaowen发布了新的文献求助10
18秒前
lcc完成签到,获得积分10
18秒前
Guoqiang发布了新的文献求助10
18秒前
guo完成签到,获得积分0
19秒前
辛勤夜柳发布了新的文献求助20
20秒前
21秒前
21秒前
蛋挞好好吃完成签到,获得积分10
21秒前
24秒前
善学以致用应助xxx采纳,获得10
25秒前
25秒前
陈可霖发布了新的文献求助10
27秒前
李爱国应助优雅的迎彤采纳,获得10
28秒前
28秒前
细心健柏完成签到 ,获得积分10
31秒前
jackie完成签到,获得积分10
32秒前
33秒前
不知道叫啥完成签到 ,获得积分10
36秒前
37秒前
空气发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228