Identification of different bran-fried Atractylodis Rhizoma and prediction of atractylodin content based on multivariate data mining combined with intelligent color recognition and near-infrared spectroscopy

麸皮 近红外光谱 鉴定(生物学) 多元统计 人工智能 模式识别(心理学) 化学 计算机科学 机器学习 物理 植物 光学 生物 有机化学 原材料
作者
Lin Lei,Chang Ke,Kunyu Xiao,Linghang Qu,Lin Xiong,Xin Zhan,Jiyuan Tu,Kang Xu,Yanju Liu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:262: 120119-120119 被引量:24
标识
DOI:10.1016/j.saa.2021.120119
摘要

Unclear established standard of bran-fried Atractylodis Rhizoma (BFAR), a commonly used drug in Traditional Chinese Medicine (TCM), compromised its clinical efficacy. In this study, we explored the correlation between color and near-infrared spectroscopy (NIR) feature with content of atractylodin, then established a rapid recognition model for the optimal degree of processing for BFAR preparation. The results of the Pearson analysis indicated that the color values were significantly and positively correlated with atractylodin content. The back propagation artificial neural network algorithm and cluster analysis revealed the color of different BFAR could be accurately divided into three categories; subsequently, the color range for the optimal degrees of stir-frying was established as follows: R[red value (105.79–127.25)], G[green value(75.84–89.64)], B[blue value(33.33–42.73)], L[Lightness (81.26–95.09)].Using NIR, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and cluster analysis, three types of BFAR were accurately identified. The prediction model of atractylodin content was established using partial least squares regression analysis. The R2 of the validation set was 0.9717 and the root mean square error was 0.026. In the color judgment model, the processing degree of 8 batches of BFAR from the market is inferior. According to the NIR judgment model, the processing degree of all samples from the market is inferior. In conclusion, the best fire degree of BFAR can be identified quickly and accurately based on our established model. It is a potential method for quality evaluation of Chinese Materia Medica processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dou完成签到,获得积分10
刚刚
无极微光应助科研通管家采纳,获得20
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
蛋挞应助科研通管家采纳,获得10
3秒前
戴戴应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
feier发布了新的文献求助10
3秒前
落后导师应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
浮浮世世应助科研通管家采纳,获得100
3秒前
华仔应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
戴戴应助科研通管家采纳,获得10
4秒前
4秒前
痞子毛应助科研通管家采纳,获得10
4秒前
4秒前
lvzhihao发布了新的文献求助10
4秒前
zlf完成签到,获得积分10
4秒前
科研通AI6应助糊涂采纳,获得30
5秒前
传奇3应助panyuz采纳,获得10
5秒前
嘟呜完成签到,获得积分10
5秒前
SciGPT应助呆萌语梦采纳,获得10
5秒前
李健的小迷弟应助果果采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
Hi完成签到,获得积分10
6秒前
泪是雨的旋律完成签到 ,获得积分10
6秒前
晴天发布了新的文献求助20
7秒前
迪迪发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
小郗完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597377
求助须知:如何正确求助?哪些是违规求助? 4682662
关于积分的说明 14826870
捐赠科研通 4660371
什么是DOI,文献DOI怎么找? 2536535
邀请新用户注册赠送积分活动 1504192
关于科研通互助平台的介绍 1470182