Identification of different bran-fried Atractylodis Rhizoma and prediction of atractylodin content based on multivariate data mining combined with intelligent color recognition and near-infrared spectroscopy

麸皮 近红外光谱 鉴定(生物学) 多元统计 人工智能 模式识别(心理学) 化学 计算机科学 机器学习 物理 植物 光学 生物 有机化学 原材料
作者
Lin Lei,Chang Ke,Kunyu Xiao,Linghang Qu,Lin Xiong,Xin Zhan,Jiyuan Tu,Kang Xu,Yanju Liu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:262: 120119-120119 被引量:24
标识
DOI:10.1016/j.saa.2021.120119
摘要

Unclear established standard of bran-fried Atractylodis Rhizoma (BFAR), a commonly used drug in Traditional Chinese Medicine (TCM), compromised its clinical efficacy. In this study, we explored the correlation between color and near-infrared spectroscopy (NIR) feature with content of atractylodin, then established a rapid recognition model for the optimal degree of processing for BFAR preparation. The results of the Pearson analysis indicated that the color values were significantly and positively correlated with atractylodin content. The back propagation artificial neural network algorithm and cluster analysis revealed the color of different BFAR could be accurately divided into three categories; subsequently, the color range for the optimal degrees of stir-frying was established as follows: R[red value (105.79–127.25)], G[green value(75.84–89.64)], B[blue value(33.33–42.73)], L[Lightness (81.26–95.09)].Using NIR, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and cluster analysis, three types of BFAR were accurately identified. The prediction model of atractylodin content was established using partial least squares regression analysis. The R2 of the validation set was 0.9717 and the root mean square error was 0.026. In the color judgment model, the processing degree of 8 batches of BFAR from the market is inferior. According to the NIR judgment model, the processing degree of all samples from the market is inferior. In conclusion, the best fire degree of BFAR can be identified quickly and accurately based on our established model. It is a potential method for quality evaluation of Chinese Materia Medica processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hesu完成签到,获得积分10
1秒前
2秒前
2秒前
Gauss应助魂惮采纳,获得30
2秒前
2秒前
慈祥的冰淇淋完成签到 ,获得积分10
3秒前
尊敬语风发布了新的文献求助10
3秒前
4秒前
大模型应助王翔采纳,获得10
4秒前
4秒前
哈no完成签到,获得积分10
4秒前
5秒前
大大杰发布了新的文献求助10
5秒前
桐桐应助优秀丹南采纳,获得10
5秒前
完美谷秋发布了新的文献求助10
6秒前
TingtingGZ发布了新的文献求助10
7秒前
小曹医生完成签到,获得积分10
7秒前
hesu发布了新的文献求助10
7秒前
跳跃发布了新的文献求助10
7秒前
苦尽甘来完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
冷酷严青发布了新的文献求助10
8秒前
大大杰完成签到,获得积分10
8秒前
Cyuan发布了新的文献求助10
9秒前
AZ完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
11秒前
D10发布了新的文献求助10
12秒前
mera发布了新的文献求助10
13秒前
TYMX完成签到,获得积分10
13秒前
QIUQIU完成签到,获得积分10
14秒前
科研通AI6应助Quincy采纳,获得10
14秒前
16秒前
16秒前
leptin发布了新的文献求助10
16秒前
zmx123123完成签到,获得积分10
16秒前
瑞rui发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536670
求助须知:如何正确求助?哪些是违规求助? 4624270
关于积分的说明 14591267
捐赠科研通 4564769
什么是DOI,文献DOI怎么找? 2501907
邀请新用户注册赠送积分活动 1480641
关于科研通互助平台的介绍 1451943