Feedforward beta control in the KSTAR tokamak by deep reinforcement learning

克星 强化学习 托卡马克 前馈 BETA(编程语言) 人工智能 计算机科学 模拟 机器学习 物理 等离子体 工程类 控制工程 程序设计语言 量子力学
作者
Jaemin Seo,Yong-Su Na,B. Kim,Chanyoung Lee,M.S. Park,Seong‐Jik Park,Y.H. Lee
出处
期刊:Nuclear Fusion [IOP Publishing]
卷期号:61 (10): 106010-106010 被引量:45
标识
DOI:10.1088/1741-4326/ac121b
摘要

In this work, we address a new feedforward control scheme of the normalized beta (βN) in tokamak plasmas, using the deep reinforcement learning (RL) technique. The deep RL algorithm optimizes an artificial decision-making agent that adjusts the discharge scenario to obtain the given target βN, from the state-action-reward sets explored by trials and errors of itself in the virtual tokamak environment. The virtual environment for the RL training is constructed with the LSTM network that imitates the plasma responses by external actuator controls, which is trained from 5-year KSTAR experimental data. Then, the RL agent experiences tons of discharges with different actuator controls in the LSTM simulator, and its internal parameters are optimized in the direction of maximizing the reward. We analyze a series of KSTAR experiments conducted with the RL-determined scenarios to validate the feasibility of the beta control scheme in a real device. We discuss the successes and limitations of the feedforward beta control by RL, and suggest our future works about it.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小扇发布了新的文献求助10
1秒前
轻烟含翠发布了新的文献求助10
1秒前
coco完成签到 ,获得积分10
2秒前
大秦帝国发布了新的文献求助10
3秒前
勤奋柚子发布了新的文献求助10
3秒前
5秒前
水水的完成签到 ,获得积分10
5秒前
美好忆之给美好忆之的求助进行了留言
6秒前
我是老大应助glzhou1975采纳,获得10
6秒前
7秒前
小扇完成签到,获得积分0
7秒前
我是老大应助柴柴柴采纳,获得10
7秒前
7秒前
霸气雯完成签到,获得积分10
8秒前
9秒前
xiaxia应助2011509382采纳,获得10
9秒前
shann完成签到,获得积分10
11秒前
浮游应助didi采纳,获得50
11秒前
Mikecheng完成签到,获得积分10
11秒前
zilhua发布了新的文献求助10
12秒前
脑洞疼应助冷傲的从雪采纳,获得10
12秒前
执着的灰狼完成签到,获得积分10
13秒前
十三发布了新的文献求助10
13秒前
达不溜搽发布了新的文献求助10
13秒前
时时晴天发布了新的文献求助10
13秒前
Akim应助轻烟含翠采纳,获得10
14秒前
lyncee应助shann采纳,获得30
15秒前
田様应助2011509382采纳,获得10
15秒前
16秒前
gege发布了新的文献求助30
16秒前
17秒前
852应助xiaowu采纳,获得10
17秒前
aaa123完成签到,获得积分10
20秒前
勤奋柚子完成签到,获得积分10
20秒前
自然雁风完成签到,获得积分10
20秒前
20秒前
柴柴柴发布了新的文献求助10
21秒前
好事成双层吉士汉堡完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
王驰发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571900
求助须知:如何正确求助?哪些是违规求助? 4657057
关于积分的说明 14719219
捐赠科研通 4597883
什么是DOI,文献DOI怎么找? 2523461
邀请新用户注册赠送积分活动 1494260
关于科研通互助平台的介绍 1464374