材料科学
陶瓷
锂(药物)
电解质
快离子导体
复合材料
化学工程
固溶体
复合数
聚合物
离子
无机化学
冶金
物理化学
有机化学
电极
内分泌学
工程类
化学
医学
作者
Mauricio R. Bonilla,Fabián A. García Daza,Pierre Ranque,Frédéric Aguesse,Javier Carrasco,Elena Akhmatskaya
标识
DOI:10.1021/acsami.1c07029
摘要
Unlocking the full potential of solid-state electrolytes (SSEs) is key to enabling safer and more-energy dense technologies than today's Li-ion batteries. In particular, composite materials comprising a conductive, flexible polymer matrix embedding ceramic filler particles are emerging as a good strategy to provide the combination of conductivity and mechanical and chemical stability demanded from SSEs. However, the electrochemical activity of these materials strongly depends on their polymer/ceramic interfacial Li-ion dynamics at the molecular scale, whose fundamental understanding remains elusive. While this interface has been explored for nonconductive ceramic fillers, atomistic modeling of interfaces involving a potentially more promising conductive ceramic filler is still lacking. We address this shortfall by employing molecular dynamics and enhanced Monte Carlo techniques to gain unprecedented insights into the interfacial Li-ion dynamics in a composite polymer-ceramic electrolyte, which integrates polyethylene oxide plus LiN(CF3SO2)2 lithium imide salt (LiTFSI), and Li-ion conductive cubic Li7La3Zr2O12 (LLZO) inclusions. Our simulations automatically produce the interfacial Li-ion distribution assumed in space-charge models and, for the first time, a long-range impact of the garnet surface on the Li-ion diffusivity is unveiled. Based on our calculations and experimental measurements of tensile strength and ionic conductivity, we are able to explain a previously reported drop in conductivity at a critical filler fraction well below the theoretical percolation threshold. Our results pave the way for the computational modeling of other conductive filler/polymer combinations and the rational design of composite SSEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI