Lithology identification from well-log curves via neural networks with additional geologic constraint

约束(计算机辅助设计) 岩性 卷积神经网络 计算机科学 序列(生物学) 测井 集合(抽象数据类型) 鉴定(生物学) 人工神经网络 循环神经网络 特征(语言学) 地质学 数据挖掘 人工智能 模式识别(心理学) 岩石学 地球物理学 数学 哲学 程序设计语言 遗传学 语言学 几何学 生物 植物
作者
Chunbi Jiang,Dongxiao Zhang,Shifeng Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (5): IM85-IM100 被引量:55
标识
DOI:10.1190/geo2020-0676.1
摘要

Lithology identification is of great importance in reservoir characterization. Recently, many researchers have applied machine-learning techniques to solve lithology identification problems from well-log curves, and their works indicate three main characteristics. First, most works predict lithofacies using features measured during logging, whereas very few consider adding stratigraphic sequence information that is available prior to drilling to solve this problem. Second, most studies predict lithofacies using measured properties of one depth point, whereas few take the influence of the neighboring formation into account. Third, due to a lack of publicly available interpreted well-log data, previous research has concentrated on applying different algorithms on their private data set, making it impossible to perform a comparison. We have developed a machine-learning framework to solve the lithology classification problem from well-log curves by incorporating an additional geologic constraint. The constraint is a stratigraphic unit, and we use it as an additional feature. We evaluate three types of recurrent neural networks (RNNs), bidirectional long short-term memory, bidirectional gated recurrent unit (Bi-GRU), and GRU-based encoder-decoder architecture with attention, as well as two types of 1D convolutional neural networks (1D CNNs), temporal convolutional network and multiscale residual network, on a publicly available data set from the North Sea. The RNN-based networks and 1D CNN-based networks can process sequential data, enabling the model to have access to information from neighboring formations when performing lithofacies prediction at a particular depth. Our experiments indicate that geologic constraint improves the performance of the models significantly, and that the overall performance of RNN-based networks is better and more consistent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lin发布了新的文献求助10
2秒前
金滢发布了新的文献求助10
2秒前
科研通AI5应助di采纳,获得10
6秒前
zhangqin完成签到,获得积分20
6秒前
6秒前
彭a发布了新的文献求助10
7秒前
科目三应助jialin采纳,获得10
8秒前
研友_VZG7GZ应助谨慎的擎宇采纳,获得10
9秒前
11秒前
12秒前
廖妙菱完成签到,获得积分10
12秒前
14秒前
Dawn完成签到,获得积分10
14秒前
PangSir完成签到,获得积分10
15秒前
15秒前
无心的枕头完成签到,获得积分10
16秒前
123发布了新的文献求助10
16秒前
nozero应助Cain采纳,获得30
16秒前
sfy66666发布了新的文献求助10
17秒前
18秒前
Jerlly完成签到,获得积分10
20秒前
万能图书馆应助zhangqin采纳,获得10
20秒前
20秒前
音悦台发布了新的文献求助10
21秒前
jialin发布了新的文献求助10
22秒前
22秒前
少吃顿饭并不难完成签到 ,获得积分10
23秒前
田様应助yuyu采纳,获得10
23秒前
酷炫橘子完成签到,获得积分10
25秒前
2y发布了新的文献求助20
25秒前
研友_8425xn发布了新的文献求助10
26秒前
26秒前
yuanyuan发布了新的文献求助10
26秒前
斯文败类应助缓慢千易采纳,获得10
27秒前
烟花应助123采纳,获得10
28秒前
29秒前
无奈友蕊发布了新的文献求助10
31秒前
Ava应助lswhyr采纳,获得10
31秒前
大个应助科研通管家采纳,获得10
31秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
The clinician's guide to the Behavior Assessment System for Children (BASC) 350
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726599
求助须知:如何正确求助?哪些是违规求助? 3271562
关于积分的说明 9972830
捐赠科研通 2987028
什么是DOI,文献DOI怎么找? 1638598
邀请新用户注册赠送积分活动 778179
科研通“疑难数据库(出版商)”最低求助积分说明 747508