Achieving Lightweight Image Steganalysis with Content-Adaptive in Spatial Domain

隐写分析技术 计算机科学 人工智能 隐写工具 模式识别(心理学) 隐写术 数字图像 过程(计算) 信息隐藏 数据挖掘 图像(数学) 图像处理 特征提取 JPEG格式 计算机视觉 特征(语言学) 领域(数学分析) 卷积神经网络 支持向量机 嵌入 离散余弦变换 像素 操作系统
作者
Junfu Chen,Zhangjie Fu,Xingming Sun,Enlu Li
出处
期刊:Lecture Notes in Computer Science
标识
DOI:10.1007/978-3-030-87355-4_53
摘要

Steganography is a technology that modifies complex regions of digital images to embed secret messages for the purpose of covert communication, while steganalysis is to detect whether secret messages are hidden in a digital image or not. However, the emergence of content-adaptive steganography such as S-UNIWARD prioritizes the embedding of secret messages in areas of textural complexity of images by embedding probability map guidelines. Such ways dramatically improve the security of steganography and impede the process of image steganalysis. Most of the existing steganalysis studies are aimed at improving the network structure to enhance the detection performance of the model, without considering the generation of embedding probability maps which can guide the training of the network model, eliminate some unnecessary distractions, shorten the training time and improve the final detection accuracy simultaneously. Therefore, how to obtain embedded probability maps and use them effectively becomes an important challenge in the field of steganalysis. In this paper, to solve the above problem we propose a content-adaptive lightweight network to implement an embedded probability map combined with steganalysis. Our steganalysis model includes two parts: embedding probability maps generation module and features processing module, which is trained Separately. The generation module adopts the basic framework and modifies the model to make it more suitable for steganography. In the features processing module, we adopt a pseudo-siamese architecture to manipulate two different input images. Next, we use the attention mechanism to assign weights to channel parameters. Finally, We use a simple data augmentation method to enhance our training dataset and improve final performance. Because our proposed model incorporates embedded probability maps as guidelines, experiments show that our proposed CNet has faster convergence speed, higher detection accuracy, and better robustness compared to networks such as Yedroudj-Net, SRNet, and Zhu-Net in the spatial domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大虫完成签到,获得积分10
1秒前
迪迪大大完成签到,获得积分10
1秒前
M跃完成签到,获得积分10
1秒前
2秒前
Lastorder17完成签到,获得积分10
2秒前
五岳三鸟完成签到,获得积分10
3秒前
3秒前
Jasper应助泡泡糖采纳,获得10
3秒前
那片叶子完成签到,获得积分10
3秒前
小竹爱科研完成签到,获得积分10
4秒前
似水年华发布了新的文献求助10
4秒前
4秒前
轩辕寄风发布了新的文献求助10
5秒前
5秒前
chenhunhun完成签到,获得积分10
5秒前
6秒前
宁诺完成签到,获得积分10
6秒前
anhuiwsy发布了新的文献求助10
7秒前
7秒前
金桔完成签到,获得积分10
8秒前
安文完成签到,获得积分10
8秒前
云与海发布了新的文献求助10
8秒前
jiao发布了新的文献求助20
9秒前
Ajax完成签到,获得积分10
9秒前
酱紫发布了新的文献求助10
9秒前
mingshiren完成签到,获得积分20
9秒前
李爱国应助乔烨磊采纳,获得10
9秒前
exersong完成签到 ,获得积分10
9秒前
阳yang完成签到,获得积分10
10秒前
Lucas应助啾咪采纳,获得10
10秒前
宁诺发布了新的文献求助10
10秒前
李怡坪完成签到 ,获得积分10
10秒前
10秒前
一秋一年完成签到,获得积分10
10秒前
XWT完成签到 ,获得积分10
10秒前
搜集达人应助idannn采纳,获得10
11秒前
研友_LwlRen发布了新的文献求助10
11秒前
蔡6705发布了新的文献求助10
12秒前
挤爆沙丁鱼完成签到,获得积分10
12秒前
jjj发布了新的文献求助100
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514