已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Chemometrics analysis for the detection of dental caries via UV absorption spectroscopy

化学计量学 线性判别分析 预处理器 人工智能 灵敏度(控制系统) 平滑的 模式识别(心理学) 计算机科学 数学 统计 机器学习 工程类 电子工程
作者
Katrul Nadia Basri,Farinawati Yazid,Rohaya Megat Abdul Wahab,Mohd Norzaliman Mohd Zain,Zalhan Md Yusof,Ahmad Sabirin Zoolfakar
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:266: 120464-120464 被引量:13
标识
DOI:10.1016/j.saa.2021.120464
摘要

Caries is one of the non-communicable diseases that has a high prevalence trend. The current methods used to detect caries require sophisticated laboratory equipment, professional inspection, and expensive equipment such as X-ray imaging device. A non-invasive and economical method is required to substitute the conventional methods for the detection of caries. UV absorption spectroscopy coupled with chemometrics analysis has emerged as a good potential candidate for such an application. Data preprocessing methods such as mean centre, autoscale and Savitzky-Golay smoothing were implemented to enhance the signal-to-noise ratio of spectra data. Various classification algorithms namely K-nearest neighbours (KNN), logistic regression (LR) and linear discriminant analysis (LDA) were implemented to classify the severity of dental caries into International Caries Detection and Assessment System (ICDAS) scores. The performance of the prediction model was measured and comparatively analysed based on the accuracy, precision, sensitivity, and specificity. The LDA algorithm combined with the Savitzky-Golay preprocessing method had shown the best result with respect to the validation data accuracy, precision, sensitivity and specificity, where each had values of 0.90, 1.00, 0.86 and 1.00 respectively. The area under the curve of the ROC plot computed for the LDA algorithm was 0.95, which indicated that the prediction algorithm was capable of differentiating normal and caries teeth excellently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
萌妹完成签到 ,获得积分10
2秒前
3秒前
cocolu应助seven采纳,获得10
3秒前
cocolu应助ming采纳,获得10
4秒前
4秒前
ASZXDW发布了新的文献求助10
4秒前
小付发布了新的文献求助10
6秒前
灭霸发布了新的文献求助10
8秒前
10秒前
情怀应助小付采纳,获得10
10秒前
13秒前
zshjwk18完成签到,获得积分10
14秒前
俏皮碧玉完成签到,获得积分10
16秒前
17秒前
17秒前
LUCKY发布了新的文献求助10
18秒前
大尾巴完成签到 ,获得积分10
19秒前
20秒前
Vedia发布了新的文献求助10
20秒前
周周发布了新的文献求助10
21秒前
24秒前
桐桐应助wenbin采纳,获得10
25秒前
lin发布了新的文献求助20
26秒前
缥缈的冰海完成签到 ,获得积分20
28秒前
打打应助liuminwms采纳,获得10
28秒前
29秒前
追寻的平安完成签到,获得积分10
32秒前
赘婿应助天才幸运鱼采纳,获得10
33秒前
刘小小123完成签到,获得积分20
34秒前
34秒前
snow完成签到,获得积分10
36秒前
37秒前
38秒前
38秒前
wenbin发布了新的文献求助10
39秒前
完美世界应助夏蓉采纳,获得10
40秒前
41秒前
42秒前
浅诺发布了新的文献求助10
43秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330233
求助须知:如何正确求助?哪些是违规求助? 2959835
关于积分的说明 8597237
捐赠科研通 2638343
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669078
邀请新用户注册赠送积分活动 656624