Performance enhancement of commercial ethylene oxide reactor by artificial intelligence approach

多目标优化 帕累托原理 工艺工程 原材料 计算机科学 人工神经网络 遗传算法 工程类 化学 运营管理 人工智能 机器学习 有机化学
作者
Somnath Chowdhury,Sandip Kumar Lahiri,Abhiram Hens,Samarth Katiyar
出处
期刊:International Journal of Chemical Reactor Engineering [De Gruyter]
卷期号:20 (2): 237-250 被引量:10
标识
DOI:10.1515/ijcre-2020-0230
摘要

Abstract The present work emphasizes the development of a generic methodology that addresses the core issue of any running chemical plant, i.e., how to maintain a delicate balance between profit and environmental impact. Here, an ethylene oxide (EO) production plant has been taken as a case study. The production of EO takes place in a multiphase catalytic reactor, the reliable first principle-based model of which is still not available in the literature. Artificial neural network (ANN) was therefore applied to develop a data-driven model of the complex reactor with the help of actual industrial data. The model successfully built up a correlation between the catalyst selectivity and temperature with other operational parameters. A hybrid multi-objective metaheuristic optimization technique, namely ANN-multi-objective genetic algorithm (MOGA) algorithm was used to develop a Pareto diagram of selectivity versus reactor temperature. The Pareto diagram will help the plant engineers to make a strategy on what operating conditions to be maintained to make a delicate balance between profit and environmental impact. It was also found that by applying this hybrid ANN-MOGA modeling and optimization technique, for a 720 KTA ethylene glycol plant, approximately 32,345 ton/year of carbon-di-oxide emission into the atmosphere can be reduced. Along with the reduction of environmental impact, this hybrid approach enables the plant to reduce raw material cost of nine million USD per annum simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
Autumn完成签到,获得积分10
7秒前
可靠馒头发布了新的文献求助10
9秒前
笑点低魔镜完成签到,获得积分10
10秒前
明理的乐儿完成签到 ,获得积分10
10秒前
香蕉觅云应助郝宝真采纳,获得10
11秒前
刘晚柠完成签到 ,获得积分10
11秒前
12秒前
老实雁蓉完成签到,获得积分10
14秒前
17秒前
18秒前
19秒前
kajikaji完成签到,获得积分10
21秒前
HenryChan完成签到,获得积分10
21秒前
果子狸发布了新的文献求助10
22秒前
22秒前
HenryChan发布了新的文献求助10
24秒前
婷婷应助冷静乌采纳,获得10
25秒前
26秒前
27秒前
健康的犀牛完成签到,获得积分10
28秒前
桐桐应助gaoww采纳,获得10
28秒前
Bonobonoya发布了新的文献求助10
29秒前
xhh关注了科研通微信公众号
29秒前
搜集达人应助gdh采纳,获得10
31秒前
Meredith应助无悔的鱼儿采纳,获得20
32秒前
淡定硬币完成签到 ,获得积分10
33秒前
免疫方舟完成签到,获得积分10
35秒前
哇卡哇卡完成签到,获得积分10
40秒前
Re完成签到 ,获得积分10
40秒前
活力涔关注了科研通微信公众号
40秒前
41秒前
42秒前
感动毒娘发布了新的文献求助10
43秒前
苞大米发布了新的文献求助10
43秒前
sword完成签到,获得积分10
46秒前
锋锋完成签到,获得积分10
46秒前
najibveto发布了新的文献求助10
47秒前
完美世界应助TCMning采纳,获得10
49秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165551
求助须知:如何正确求助?哪些是违规求助? 2816731
关于积分的说明 7913345
捐赠科研通 2476143
什么是DOI,文献DOI怎么找? 1318707
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388