LSDDL: Layer-Wise Sparsification for Distributed Deep Learning

计算机科学 可扩展性 人工智能 随机梯度下降算法 架空(工程) 瓶颈 人工神经网络 深度学习 机器学习 分布式计算 过程(计算) 利用 计算机工程 操作系统 嵌入式系统 数据库 计算机安全
作者
Yuxi Hong,Peng Han
出处
期刊:Big Data Research [Elsevier BV]
卷期号:26: 100272-100272 被引量:3
标识
DOI:10.1016/j.bdr.2021.100272
摘要

With an escalating arms race to adopt machine learning (ML) into diverse application domains, there is an urgent need to efficiently support distributed machine learning (ML) algorithms. As Stochastic Gradient Descent (SGD) is widely adopted in training ML models, the performance bottleneck of distributed ML would be the communication cost to transmit gradients through the network. While a lot of existing studies aim at compressing the gradient so as to reduce the overhead of network communication, they ignore the model structure in the process of compression. As a result, while they could reduce the communication time, they would result in serious computation discontinuity for deep neural networks, which will lower the prediction accuracy. In this paper, we propose LSDDL, a scalable and light-weighted method to boost the training process of deep learning models in shared-nothing environment. The cornerstone of LSDDL lies on the observation that different layers in a neural network have different importance in the process of decompression. To exploit this insight, we devise a sparsification strategy to compress the gradient of deep neural networks which can preserve the structural information of the model. In addition, we provide a series of compression techniques to further reduce the communication overhead and optimize the overall performance. We implement our LSDDL framework in the PyTorch system and encapsulate it as a user friendly API. We validate our proposed techniques by training several real models on a large cluster. Experimental results show that the communication time of LSDDL is up to 5.43 times less than the original SGD without losing much accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dbdxyty完成签到,获得积分10
刚刚
爆米花应助猫猫侠采纳,获得10
1秒前
1秒前
刘先生发布了新的文献求助10
2秒前
卡恩完成签到 ,获得积分10
2秒前
3秒前
leslie花花发布了新的文献求助10
3秒前
3秒前
沉默的瑞宝关注了科研通微信公众号
3秒前
bkagyin应助沧笙踏歌采纳,获得10
3秒前
清脆寒香发布了新的文献求助10
4秒前
xiaozheng发布了新的文献求助10
4秒前
4秒前
5秒前
大师现在完成签到,获得积分10
5秒前
xiao双月发布了新的文献求助10
5秒前
8秒前
8秒前
hb完成签到,获得积分10
9秒前
Active发布了新的文献求助10
10秒前
高兴荔枝完成签到,获得积分10
10秒前
花里胡哨的花完成签到 ,获得积分10
10秒前
Wang发布了新的文献求助10
10秒前
大模型应助qwh采纳,获得10
11秒前
大师现在发布了新的文献求助10
11秒前
11秒前
尔安完成签到,获得积分10
12秒前
Coinish丶Fuhua完成签到,获得积分10
12秒前
慕青应助刘先生采纳,获得20
12秒前
葡萄小伊ovo完成签到 ,获得积分10
13秒前
Bryan应助calphen采纳,获得10
14秒前
晓天完成签到,获得积分10
17秒前
日富一日完成签到 ,获得积分10
17秒前
zizhuo2完成签到,获得积分10
17秒前
冰可乐发布了新的文献求助10
17秒前
Lucas应助xiaozheng采纳,获得10
18秒前
小马甲应助大师现在采纳,获得10
18秒前
20秒前
20秒前
hull完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498