LSDDL: Layer-Wise Sparsification for Distributed Deep Learning

计算机科学 可扩展性 人工智能 随机梯度下降算法 架空(工程) 瓶颈 人工神经网络 深度学习 机器学习 分布式计算 过程(计算) 利用 计算机工程 操作系统 嵌入式系统 数据库 计算机安全
作者
Yuxi Hong,Peng Han
出处
期刊:Big Data Research [Elsevier]
卷期号:26: 100272-100272 被引量:3
标识
DOI:10.1016/j.bdr.2021.100272
摘要

With an escalating arms race to adopt machine learning (ML) into diverse application domains, there is an urgent need to efficiently support distributed machine learning (ML) algorithms. As Stochastic Gradient Descent (SGD) is widely adopted in training ML models, the performance bottleneck of distributed ML would be the communication cost to transmit gradients through the network. While a lot of existing studies aim at compressing the gradient so as to reduce the overhead of network communication, they ignore the model structure in the process of compression. As a result, while they could reduce the communication time, they would result in serious computation discontinuity for deep neural networks, which will lower the prediction accuracy. In this paper, we propose LSDDL, a scalable and light-weighted method to boost the training process of deep learning models in shared-nothing environment. The cornerstone of LSDDL lies on the observation that different layers in a neural network have different importance in the process of decompression. To exploit this insight, we devise a sparsification strategy to compress the gradient of deep neural networks which can preserve the structural information of the model. In addition, we provide a series of compression techniques to further reduce the communication overhead and optimize the overall performance. We implement our LSDDL framework in the PyTorch system and encapsulate it as a user friendly API. We validate our proposed techniques by training several real models on a large cluster. Experimental results show that the communication time of LSDDL is up to 5.43 times less than the original SGD without losing much accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xkyasc发布了新的文献求助10
刚刚
852应助优雅的大白菜采纳,获得10
1秒前
ddffgz发布了新的文献求助10
2秒前
daxiooo11发布了新的文献求助30
2秒前
小马甲应助VK2801采纳,获得10
2秒前
研友_nPPdan完成签到,获得积分10
3秒前
江阳宏发布了新的文献求助10
3秒前
闪闪的芷蕾完成签到,获得积分10
4秒前
Owen应助冰雪物语采纳,获得10
4秒前
NexusExplorer应助lixin采纳,获得10
5秒前
终于完成签到,获得积分20
5秒前
5秒前
维多利亚少年完成签到,获得积分10
5秒前
5秒前
6秒前
残酷的风完成签到,获得积分10
6秒前
7秒前
7秒前
研友_VZG7GZ应助美满的初之采纳,获得10
8秒前
超帅完成签到,获得积分10
9秒前
666发布了新的文献求助10
9秒前
上官若男应助江阳宏采纳,获得50
10秒前
陆康完成签到 ,获得积分10
10秒前
tonyfountain完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
王海海完成签到 ,获得积分10
12秒前
99giddens应助杨咩咩采纳,获得200
12秒前
科研通AI2S应助优秀傲松采纳,获得10
13秒前
欣慰的醉香完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
修文发布了新的文献求助10
14秒前
所所应助自由雅容采纳,获得10
14秒前
Yu发布了新的文献求助10
14秒前
带头大哥应助None采纳,获得10
15秒前
科研通AI6.1应助ZeKaWang采纳,获得50
15秒前
Owen应助飞飞采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609