LSDDL: Layer-Wise Sparsification for Distributed Deep Learning

计算机科学 可扩展性 人工智能 随机梯度下降算法 架空(工程) 瓶颈 人工神经网络 深度学习 机器学习 分布式计算 过程(计算) 利用 计算机工程 操作系统 嵌入式系统 数据库 计算机安全
作者
Yuxi Hong,Peng Han
出处
期刊:Big Data Research [Elsevier BV]
卷期号:26: 100272-100272 被引量:3
标识
DOI:10.1016/j.bdr.2021.100272
摘要

With an escalating arms race to adopt machine learning (ML) into diverse application domains, there is an urgent need to efficiently support distributed machine learning (ML) algorithms. As Stochastic Gradient Descent (SGD) is widely adopted in training ML models, the performance bottleneck of distributed ML would be the communication cost to transmit gradients through the network. While a lot of existing studies aim at compressing the gradient so as to reduce the overhead of network communication, they ignore the model structure in the process of compression. As a result, while they could reduce the communication time, they would result in serious computation discontinuity for deep neural networks, which will lower the prediction accuracy. In this paper, we propose LSDDL, a scalable and light-weighted method to boost the training process of deep learning models in shared-nothing environment. The cornerstone of LSDDL lies on the observation that different layers in a neural network have different importance in the process of decompression. To exploit this insight, we devise a sparsification strategy to compress the gradient of deep neural networks which can preserve the structural information of the model. In addition, we provide a series of compression techniques to further reduce the communication overhead and optimize the overall performance. We implement our LSDDL framework in the PyTorch system and encapsulate it as a user friendly API. We validate our proposed techniques by training several real models on a large cluster. Experimental results show that the communication time of LSDDL is up to 5.43 times less than the original SGD without losing much accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
1秒前
xiongyh10完成签到,获得积分0
2秒前
花开花落花无悔完成签到 ,获得积分10
2秒前
AAA建材王哥完成签到,获得积分10
3秒前
3秒前
chenfeng完成签到,获得积分10
3秒前
小闫同学发布了新的文献求助10
4秒前
顺心一凤发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
呜呼完成签到,获得积分20
6秒前
tt发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
李健应助淡然丹寒采纳,获得10
7秒前
chenfeng发布了新的文献求助10
7秒前
8秒前
9秒前
浮游应助Cyd采纳,获得10
9秒前
9秒前
logic22发布了新的文献求助10
10秒前
10秒前
10秒前
迷人的紫真完成签到,获得积分10
10秒前
CipherSage应助王一采纳,获得10
10秒前
爱吃好吃的完成签到,获得积分10
11秒前
啦啦啦啦啦完成签到 ,获得积分10
11秒前
11秒前
zhouyan发布了新的文献求助10
12秒前
于于发布了新的文献求助10
12秒前
呜呼发布了新的文献求助10
12秒前
姚瑞峰发布了新的文献求助10
12秒前
12秒前
dpz发布了新的文献求助10
13秒前
tt完成签到,获得积分10
13秒前
cherry完成签到,获得积分10
13秒前
14秒前
14秒前
坚定自信发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913717
求助须知:如何正确求助?哪些是违规求助? 4188247
关于积分的说明 13007459
捐赠科研通 3956973
什么是DOI,文献DOI怎么找? 2169503
邀请新用户注册赠送积分活动 1187820
关于科研通互助平台的介绍 1095383