LSDDL: Layer-Wise Sparsification for Distributed Deep Learning

计算机科学 可扩展性 人工智能 随机梯度下降算法 架空(工程) 瓶颈 人工神经网络 深度学习 机器学习 分布式计算 过程(计算) 利用 计算机工程 操作系统 嵌入式系统 数据库 计算机安全
作者
Yuxi Hong,Peng Han
出处
期刊:Big Data Research [Elsevier BV]
卷期号:26: 100272-100272 被引量:3
标识
DOI:10.1016/j.bdr.2021.100272
摘要

With an escalating arms race to adopt machine learning (ML) into diverse application domains, there is an urgent need to efficiently support distributed machine learning (ML) algorithms. As Stochastic Gradient Descent (SGD) is widely adopted in training ML models, the performance bottleneck of distributed ML would be the communication cost to transmit gradients through the network. While a lot of existing studies aim at compressing the gradient so as to reduce the overhead of network communication, they ignore the model structure in the process of compression. As a result, while they could reduce the communication time, they would result in serious computation discontinuity for deep neural networks, which will lower the prediction accuracy. In this paper, we propose LSDDL, a scalable and light-weighted method to boost the training process of deep learning models in shared-nothing environment. The cornerstone of LSDDL lies on the observation that different layers in a neural network have different importance in the process of decompression. To exploit this insight, we devise a sparsification strategy to compress the gradient of deep neural networks which can preserve the structural information of the model. In addition, we provide a series of compression techniques to further reduce the communication overhead and optimize the overall performance. We implement our LSDDL framework in the PyTorch system and encapsulate it as a user friendly API. We validate our proposed techniques by training several real models on a large cluster. Experimental results show that the communication time of LSDDL is up to 5.43 times less than the original SGD without losing much accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Komorebi完成签到,获得积分10
刚刚
蜡笔小新完成签到,获得积分10
刚刚
xuan发布了新的文献求助10
刚刚
勤劳访烟完成签到 ,获得积分10
刚刚
刚刚
啊是是是完成签到,获得积分20
刚刚
saxg_hu完成签到,获得积分10
1秒前
Summer完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
KKLD发布了新的文献求助10
2秒前
甜甜木各格完成签到 ,获得积分10
3秒前
专注大白菜真实的钥匙完成签到,获得积分10
3秒前
abtitw完成签到,获得积分10
3秒前
哈哈哈完成签到,获得积分10
3秒前
Sodapink发布了新的文献求助10
3秒前
3秒前
打野完成签到,获得积分10
4秒前
ExtroGod完成签到,获得积分10
4秒前
未来完成签到,获得积分10
4秒前
小旭不会飞完成签到,获得积分10
5秒前
泽1完成签到,获得积分20
5秒前
pokemeow完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
泽1发布了新的文献求助10
7秒前
精明的发卡完成签到,获得积分10
8秒前
奶糖最可爱完成签到,获得积分10
8秒前
liangliang完成签到,获得积分10
9秒前
9秒前
啊是是是发布了新的文献求助10
9秒前
9秒前
syuen完成签到,获得积分10
9秒前
昏睡的蟠桃应助理想采纳,获得50
10秒前
11秒前
初次完成签到 ,获得积分10
11秒前
lin完成签到,获得积分10
11秒前
Iris完成签到 ,获得积分10
11秒前
怕黑南琴完成签到 ,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661305
求助须知:如何正确求助?哪些是违规求助? 3222424
关于积分的说明 9745270
捐赠科研通 2931993
什么是DOI,文献DOI怎么找? 1605350
邀请新用户注册赠送积分活动 757854
科研通“疑难数据库(出版商)”最低求助积分说明 734569