LSDDL: Layer-Wise Sparsification for Distributed Deep Learning

计算机科学 可扩展性 人工智能 随机梯度下降算法 架空(工程) 瓶颈 人工神经网络 深度学习 机器学习 分布式计算 过程(计算) 利用 计算机工程 操作系统 嵌入式系统 数据库 计算机安全
作者
Yuxi Hong,Peng Han
出处
期刊:Big Data Research [Elsevier]
卷期号:26: 100272-100272 被引量:3
标识
DOI:10.1016/j.bdr.2021.100272
摘要

With an escalating arms race to adopt machine learning (ML) into diverse application domains, there is an urgent need to efficiently support distributed machine learning (ML) algorithms. As Stochastic Gradient Descent (SGD) is widely adopted in training ML models, the performance bottleneck of distributed ML would be the communication cost to transmit gradients through the network. While a lot of existing studies aim at compressing the gradient so as to reduce the overhead of network communication, they ignore the model structure in the process of compression. As a result, while they could reduce the communication time, they would result in serious computation discontinuity for deep neural networks, which will lower the prediction accuracy. In this paper, we propose LSDDL, a scalable and light-weighted method to boost the training process of deep learning models in shared-nothing environment. The cornerstone of LSDDL lies on the observation that different layers in a neural network have different importance in the process of decompression. To exploit this insight, we devise a sparsification strategy to compress the gradient of deep neural networks which can preserve the structural information of the model. In addition, we provide a series of compression techniques to further reduce the communication overhead and optimize the overall performance. We implement our LSDDL framework in the PyTorch system and encapsulate it as a user friendly API. We validate our proposed techniques by training several real models on a large cluster. Experimental results show that the communication time of LSDDL is up to 5.43 times less than the original SGD without losing much accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11632完成签到,获得积分10
1秒前
共享精神应助Ren采纳,获得10
1秒前
CodeCraft应助Jane采纳,获得10
2秒前
2秒前
2秒前
隐形曼青应助shine采纳,获得10
2秒前
3秒前
内鬼完成签到 ,获得积分10
3秒前
3秒前
打打应助九歌采纳,获得10
3秒前
桐桐应助云海采纳,获得10
4秒前
5秒前
克己发布了新的文献求助10
5秒前
柚子完成签到,获得积分20
6秒前
福西西完成签到,获得积分20
6秒前
6秒前
Man发布了新的文献求助10
7秒前
阔达亿先发布了新的文献求助30
7秒前
spring发布了新的文献求助10
7秒前
冷酷芝发布了新的文献求助10
8秒前
airyletter完成签到,获得积分10
8秒前
wang发布了新的文献求助10
8秒前
科研通AI2S应助HBXAurora采纳,获得10
9秒前
11111发布了新的文献求助10
9秒前
12秒前
13秒前
13秒前
spring完成签到,获得积分10
13秒前
wuxiaopu完成签到,获得积分10
13秒前
云海完成签到,获得积分10
14秒前
15秒前
15秒前
炙热的夜雪完成签到 ,获得积分10
16秒前
16秒前
在水一方应助D段采纳,获得10
16秒前
棉花糖完成签到,获得积分10
17秒前
17秒前
Cindy完成签到,获得积分10
17秒前
云海发布了新的文献求助10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825