LSDDL: Layer-Wise Sparsification for Distributed Deep Learning

计算机科学 可扩展性 人工智能 随机梯度下降算法 架空(工程) 瓶颈 人工神经网络 深度学习 机器学习 分布式计算 过程(计算) 利用 计算机工程 操作系统 嵌入式系统 数据库 计算机安全
作者
Yuxi Hong,Peng Han
出处
期刊:Big Data Research [Elsevier]
卷期号:26: 100272-100272 被引量:3
标识
DOI:10.1016/j.bdr.2021.100272
摘要

With an escalating arms race to adopt machine learning (ML) into diverse application domains, there is an urgent need to efficiently support distributed machine learning (ML) algorithms. As Stochastic Gradient Descent (SGD) is widely adopted in training ML models, the performance bottleneck of distributed ML would be the communication cost to transmit gradients through the network. While a lot of existing studies aim at compressing the gradient so as to reduce the overhead of network communication, they ignore the model structure in the process of compression. As a result, while they could reduce the communication time, they would result in serious computation discontinuity for deep neural networks, which will lower the prediction accuracy. In this paper, we propose LSDDL, a scalable and light-weighted method to boost the training process of deep learning models in shared-nothing environment. The cornerstone of LSDDL lies on the observation that different layers in a neural network have different importance in the process of decompression. To exploit this insight, we devise a sparsification strategy to compress the gradient of deep neural networks which can preserve the structural information of the model. In addition, we provide a series of compression techniques to further reduce the communication overhead and optimize the overall performance. We implement our LSDDL framework in the PyTorch system and encapsulate it as a user friendly API. We validate our proposed techniques by training several real models on a large cluster. Experimental results show that the communication time of LSDDL is up to 5.43 times less than the original SGD without losing much accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
落池里的水完成签到,获得积分10
1秒前
congjia完成签到,获得积分10
3秒前
666发布了新的文献求助10
5秒前
GSQ完成签到,获得积分10
5秒前
10秒前
Wenyu完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
眼睛大的薯片完成签到 ,获得积分10
12秒前
小猫完成签到 ,获得积分10
13秒前
Criminology34应助积极的赛君采纳,获得10
14秒前
mafei完成签到 ,获得积分10
14秒前
饱满的书萱完成签到,获得积分10
16秒前
baozeNG发布了新的文献求助10
16秒前
luoqin完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
拟态橙完成签到 ,获得积分10
20秒前
KK完成签到 ,获得积分10
21秒前
整齐豆芽完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
兰花二狗他爹完成签到,获得积分10
30秒前
chen发布了新的文献求助10
31秒前
L拉丁是我干死的完成签到,获得积分10
31秒前
Criminology34应助饱满的书萱采纳,获得10
32秒前
kangkang完成签到 ,获得积分10
32秒前
青己完成签到 ,获得积分10
33秒前
34秒前
落霞与孤鹜齐飞完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
37秒前
tigger完成签到,获得积分10
40秒前
Aeeeeeeon完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
47秒前
wmz完成签到 ,获得积分10
47秒前
尊敬帅哥完成签到,获得积分10
47秒前
48秒前
量子星尘发布了新的文献求助10
48秒前
扯淡儿完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715519
求助须知:如何正确求助?哪些是违规求助? 5235026
关于积分的说明 15274483
捐赠科研通 4866313
什么是DOI,文献DOI怎么找? 2612912
邀请新用户注册赠送积分活动 1563054
关于科研通互助平台的介绍 1520478