Machine Learning-Based Noninvasive Quantification of Single-Imaging Session Dual-Tracer 18F-FDG and 68Ga-DOTATATE Dynamic PET-CT in Oncology

核医学 正电子发射断层摄影术 示踪剂 神经内分泌肿瘤 PET-CT 动态成像 计算机科学 医学 人工智能 物理 图像处理 内科学 数字图像处理 图像(数学) 核物理学
作者
Wenxiang Ding,Jiangyuan Yu,Chaojie Zheng,Peng Fu,Qiu Huang,Dagan Feng,Zhi Yang,Richard L. Wahl,Yun Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (2): 347-359 被引量:12
标识
DOI:10.1109/tmi.2021.3112783
摘要

68Ga-DOTATATE PET-CT is routinely used for imaging neuroendocrine tumor (NET) somatostatin receptor subtype 2 (SSTR2) density in patients, and is complementary to FDG PET-CT for improving the accuracy of NET detection, characterization, grading, staging, and predicting/monitoring NET responses to treatment. Performing sequential 18F-FDG and 68Ga-DOTATATE PET scans would require 2 or more days and can delay patient care. To align temporal and spatial measurements of 18F-FDG and 68Ga-DOTATATE PET, and to reduce scan time and CT radiation exposure to patients, we propose a single-imaging session dual-tracer dynamic PET acquisition protocol in the study. A recurrent extreme gradient boosting (rXGBoost) machine learning algorithm was proposed to separate the mixed 18F-FDG and 68Ga-DOTATATE time activity curves (TACs) for the region of interest (ROI) based quantification with tracer kinetic modeling. A conventional parallel multi-tracer compartment modeling method was also implemented for reference. Single-scan dual-tracer dynamic PET was simulated from 12 NET patient studies with 18F-FDG and 68Ga-DOTATATE 45-min dynamic PET scans separately obtained within 2 days. Our experimental results suggested an 18F-FDG injection first followed by 68Ga-DOTATATE with a minimum 5 min delayed injection protocol for the separation of mixed 18F-FDG and 68Ga-DOTATATE TACs using rXGBoost algorithm followed by tracer kinetic modeling is highly feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123cxj完成签到,获得积分10
3秒前
CO2发布了新的文献求助10
3秒前
summer发布了新的文献求助10
3秒前
4秒前
Xx.发布了新的文献求助10
4秒前
大大关注了科研通微信公众号
4秒前
稚祎完成签到 ,获得积分10
4秒前
4秒前
CodeCraft应助东东采纳,获得10
5秒前
6秒前
叽里咕噜完成签到 ,获得积分10
7秒前
田様应助zccc采纳,获得10
8秒前
隐形的雁完成签到,获得积分10
8秒前
追寻的秋玲完成签到,获得积分10
9秒前
李繁蕊发布了新的文献求助10
9秒前
10秒前
舒心的紫雪完成签到 ,获得积分10
11秒前
11秒前
13秒前
13秒前
14秒前
不上课不行完成签到,获得积分10
15秒前
再干一杯完成签到,获得积分10
15秒前
16秒前
汉堡包应助rudjs采纳,获得10
17秒前
17秒前
zsyzxb发布了新的文献求助10
18秒前
东东发布了新的文献求助10
18秒前
zena92发布了新的文献求助10
19秒前
锤子米完成签到,获得积分10
19秒前
19秒前
赤练仙子完成签到,获得积分10
21秒前
MnO2fff应助zsyzxb采纳,获得20
24秒前
kingwill应助zsyzxb采纳,获得20
24秒前
顺利鱼完成签到,获得积分10
25秒前
27秒前
28秒前
Xx.完成签到,获得积分10
29秒前
星辰大海应助内向凌兰采纳,获得10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808