计算机科学
图形
分类
图形数据库
深度学习
卷积神经网络
机器学习
人工智能
理论计算机科学
作者
Jie Zhou,Ganqu Cui,Shengding Hu,Zhengyan Zhang,Cheng Yang,Zhiyuan Liu,Lifeng Wang,Changcheng Li,Maosong Sun
出处
期刊:AI open
[Elsevier]
日期:2020-01-01
卷期号:1: 57-81
被引量:3183
标识
DOI:10.1016/j.aiopen.2021.01.001
摘要
Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics systems, learning molecular fingerprints, predicting protein interface, and classifying diseases demand a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures (like the dependency trees of sentences and the scene graphs of images) is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are neural models that capture the dependence of graphs via message passing between the nodes of graphs. In recent years, variants of GNNs such as graph convolutional network (GCN), graph attention network (GAT), graph recurrent network (GRN) have demonstrated ground-breaking performances on many deep learning tasks. In this survey, we propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI