Investigation of photocatalytic properties based on Fe and Ce Co-doped ZnO via hydrothermal method and first principles

光催化 材料科学 兴奋剂 X射线光电子能谱 光致发光 热液循环 带隙 扫描电子显微镜 光谱学 退火(玻璃) 分析化学(期刊) 漫反射红外傅里叶变换 化学工程 核化学 纳米技术 光电子学 催化作用 复合材料 化学 有机化学 物理 量子力学 工程类
作者
Nan Yang,Jin Li,Ya Nan Wang,Jie Ma
出处
期刊:Materials Science in Semiconductor Processing [Elsevier]
卷期号:131: 105835-105835 被引量:22
标识
DOI:10.1016/j.mssp.2021.105835
摘要

In this study, Fe and Ce co-doped ZnO (Zn1-2xFexCexO, x = 0, 0.01, 0.03, 0.04) was prepared through hydrothermal synthesis, followed by annealing. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectroscopy, and photoluminescence spectroscopy, and the photocatalytic efficiency of the samples on the organic dye, methylene blue, under simulated sunlight was studied. Based on first principles, the influence of doping on the band structure of the samples was studied. The experimental results show that co-doping ratios affect the performance of ZnO. When the doping concentration was 3 at%, the red shift of the UV–vis spectrum of the material was the most obvious, and the PL of the material was inhibited. Compared with pure ZnO, the degradation rate increased from 72.6% to 98.5%. As the doping concentration increased, the photocatalytic performance of the materials began to decrease. Simulations showed that the incorporation of small amounts of Fe and Ce reduced the band gap of ZnO and introduced a shallow donor level in the band gap, effectively inhibiting the recombination of carriers, thereby improving the photocatalytic performance of the material. When the doping ratio was increased from 3% to 4%, the band gap became wider. These results indicate that Fe and Ce co-doped ZnO has potential applications in the photocatalytic degradation of organic pollutants and provides a method for improving photocatalytic performance by inhibiting carrier recombination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
刚刚
zizi完成签到 ,获得积分10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
1秒前
熬夜波比应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
Icrus应助科研通管家采纳,获得10
1秒前
memedaaaah完成签到,获得积分10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
huangyao完成签到,获得积分10
2秒前
尊敬伟宸完成签到,获得积分10
2秒前
老福贵儿应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
尊敬伟宸发布了新的文献求助10
4秒前
王钢铁完成签到,获得积分10
4秒前
迷人雪碧发布了新的文献求助10
4秒前
Ava应助漂亮的孤丹采纳,获得10
5秒前
6秒前
6秒前
科研通AI2S应助狂野世立采纳,获得10
6秒前
Nemo发布了新的文献求助10
7秒前
8秒前
billows发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325