Investigation of photocatalytic properties based on Fe and Ce Co-doped ZnO via hydrothermal method and first principles

光催化 材料科学 兴奋剂 X射线光电子能谱 光致发光 热液循环 带隙 扫描电子显微镜 光谱学 退火(玻璃) 分析化学(期刊) 漫反射红外傅里叶变换 化学工程 核化学 纳米技术 光电子学 催化作用 复合材料 化学 有机化学 物理 量子力学 工程类
作者
Nan Yang,Jin Li,Ya Nan Wang,Jie Ma
出处
期刊:Materials Science in Semiconductor Processing [Elsevier]
卷期号:131: 105835-105835 被引量:22
标识
DOI:10.1016/j.mssp.2021.105835
摘要

In this study, Fe and Ce co-doped ZnO (Zn1-2xFexCexO, x = 0, 0.01, 0.03, 0.04) was prepared through hydrothermal synthesis, followed by annealing. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectroscopy, and photoluminescence spectroscopy, and the photocatalytic efficiency of the samples on the organic dye, methylene blue, under simulated sunlight was studied. Based on first principles, the influence of doping on the band structure of the samples was studied. The experimental results show that co-doping ratios affect the performance of ZnO. When the doping concentration was 3 at%, the red shift of the UV–vis spectrum of the material was the most obvious, and the PL of the material was inhibited. Compared with pure ZnO, the degradation rate increased from 72.6% to 98.5%. As the doping concentration increased, the photocatalytic performance of the materials began to decrease. Simulations showed that the incorporation of small amounts of Fe and Ce reduced the band gap of ZnO and introduced a shallow donor level in the band gap, effectively inhibiting the recombination of carriers, thereby improving the photocatalytic performance of the material. When the doping ratio was increased from 3% to 4%, the band gap became wider. These results indicate that Fe and Ce co-doped ZnO has potential applications in the photocatalytic degradation of organic pollutants and provides a method for improving photocatalytic performance by inhibiting carrier recombination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郑力阳发布了新的文献求助10
刚刚
刻苦惜萍发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
ssssss发布了新的文献求助10
5秒前
6秒前
高12完成签到,获得积分20
7秒前
妮多发布了新的文献求助10
7秒前
11111发布了新的文献求助10
8秒前
马博的司机完成签到,获得积分10
9秒前
DrNaz应助自然的含蕾采纳,获得10
9秒前
DQQ完成签到 ,获得积分10
11秒前
丘比特应助呆呆采纳,获得10
12秒前
mmy发布了新的文献求助10
12秒前
赘婿应助刻苦惜萍采纳,获得10
12秒前
nihao完成签到,获得积分10
12秒前
12秒前
13秒前
深情安青应助孤岛采纳,获得10
13秒前
13秒前
13秒前
UU完成签到,获得积分10
13秒前
13秒前
yiyi完成签到,获得积分10
14秒前
李兴完成签到 ,获得积分10
14秒前
14秒前
简单7879完成签到,获得积分10
15秒前
Ben完成签到,获得积分10
15秒前
打打应助pyk采纳,获得10
15秒前
chiva发布了新的文献求助10
16秒前
16秒前
马奎发布了新的文献求助20
17秒前
yingying发布了新的文献求助10
17秒前
碳为观止发布了新的文献求助10
18秒前
18秒前
19秒前
穿西装的小卡完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736132
求助须知:如何正确求助?哪些是违规求助? 5364373
关于积分的说明 15332475
捐赠科研通 4880103
什么是DOI,文献DOI怎么找? 2622562
邀请新用户注册赠送积分活动 1571553
关于科研通互助平台的介绍 1528376