转甲状腺素
免疫沉淀
化学
细胞生物学
突变体
分子生物学
生物化学
生物
基因
内分泌学
作者
Yu Gu,Di Hu,Yu Xin,Jun Shao
标识
DOI:10.1016/j.bbrc.2021.04.035
摘要
Transthyretin (TTR) has been proved to repress neovascularization in diabetic retinopathy environment by regulating the molecules in and downstream of the STAT-4/miR-223-3p/FBXW7 signal pathway; however, the details of its direct targets are still not well understood. The interaction between TTR and a target in nucleus of human retinal microvascular endothelial cells (hRECs), heterogeneous nuclear ribonucleoprotein (hnRNP) A2B1, was screened by immunoprecipitation (IP) and mass spectrum (MS), and it was further confirmed by co-immunoprecipitation (co-IP). Regarding ZDOCK analysis using Discovery Studio, the interface and potential binding sites between TTR and hnRNPA2B1 were simulated; mutants were designed in these regions and five soluble ones were recombinantly expressed and prepared; the interaction between TTR and hnRNPA2B1 were disrupted by several mutated residues. In addition, for several mutated TTRs, the inhibition activities against the proliferation, migration and tube formation of hRECs were absent in vitro. Following the disruption of TTR-hnRNPA2B1, the molecules in and downstream of STAT-4/miR-223-3p/FBXW7 signal pathway, including STAT-4, miR-223-3p, FBXW7 p-Akt and Notch1 could not be regulated by TTR mutants; therefore, a TTR-hnRNPA2B1/STAT-4/miR-223-3p/FBXW7 was proposed. In conclusion, this work suggested that TTR should play a physiological role in diabetic environment by the direct binding with hnRNPA2B1, and it provided a theoretical basis for clinical diagnosis, therapy and further application.
科研通智能强力驱动
Strongly Powered by AbleSci AI