Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection

计算机科学 特征提取 子网 人工智能 卷积神经网络 特征(语言学) 深度学习 模式识别(心理学) 块(置换群论) 变更检测 特征学习 代表(政治) 语言学 政治 几何学 哲学 计算机安全 法学 数学 政治学
作者
Qingle Guo,Junping Zhang,Shengyu Zhu,Chongxiao Zhong,Ye Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:39
标识
DOI:10.1109/tgrs.2021.3131993
摘要

With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助小姜采纳,获得10
刚刚
Lucas应助氮化硼小兵采纳,获得10
1秒前
鲤鱼初柳完成签到 ,获得积分10
1秒前
ZYC007完成签到,获得积分10
2秒前
吴鱼鱼鱼发布了新的文献求助20
2秒前
w_sea完成签到,获得积分10
3秒前
宁地啊发布了新的文献求助10
3秒前
乐乐应助星辉斑斓采纳,获得10
3秒前
yrll发布了新的文献求助10
4秒前
4秒前
4秒前
谦玉完成签到,获得积分10
5秒前
6秒前
7秒前
shuxian完成签到,获得积分10
7秒前
Akim应助胡图图采纳,获得10
8秒前
王淳完成签到 ,获得积分10
10秒前
CHEN发布了新的文献求助10
10秒前
qikkk完成签到,获得积分10
11秒前
11秒前
11秒前
小武wwwww完成签到 ,获得积分10
12秒前
mm发布了新的文献求助10
12秒前
野猪发布了新的文献求助30
12秒前
13秒前
14秒前
14秒前
Lucas应助典雅又夏采纳,获得10
15秒前
碧蓝醉蝶发布了新的文献求助10
16秒前
17秒前
杰尼乾乾发布了新的文献求助20
18秒前
余慵慵完成签到 ,获得积分10
18秒前
完美世界应助李双兔采纳,获得10
18秒前
tatami发布了新的文献求助10
19秒前
充电宝应助萧水白采纳,获得100
19秒前
20秒前
bkagyin应助chenling采纳,获得10
22秒前
24秒前
妙妙完成签到,获得积分10
27秒前
嗄巧完成签到,获得积分20
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550