Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection

计算机科学 特征提取 子网 人工智能 卷积神经网络 特征(语言学) 深度学习 模式识别(心理学) 块(置换群论) 变更检测 特征学习 代表(政治) 语言学 政治 几何学 哲学 计算机安全 法学 数学 政治学
作者
Qingle Guo,Junping Zhang,Shengyu Zhu,Chongxiao Zhong,Ye Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:39
标识
DOI:10.1109/tgrs.2021.3131993
摘要

With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liubeibei完成签到,获得积分10
1秒前
4秒前
4秒前
l9完成签到 ,获得积分10
6秒前
6秒前
7秒前
Jasper应助小熊炸毛采纳,获得10
8秒前
浅尝离白应助bezoar采纳,获得30
9秒前
南望发布了新的文献求助20
10秒前
科目三应助wickjone采纳,获得10
10秒前
CFT发布了新的文献求助10
10秒前
11秒前
AzA发布了新的文献求助10
12秒前
奔山而行完成签到,获得积分20
13秒前
14秒前
17秒前
18秒前
18秒前
WUHUIWEN完成签到,获得积分10
18秒前
iNk应助111111采纳,获得50
19秒前
19秒前
22秒前
飞星发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
zdy完成签到,获得积分10
25秒前
CFT完成签到,获得积分10
25秒前
慕青应助qianqian采纳,获得10
25秒前
顺利毕业完成签到 ,获得积分10
26秒前
28秒前
28秒前
29秒前
魁梧的盼望完成签到 ,获得积分10
29秒前
31秒前
32秒前
别来无恙完成签到,获得积分10
33秒前
S2发布了新的文献求助10
34秒前
冷静烨霖完成签到 ,获得积分10
35秒前
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724