Vascular ageing and peripheral pulse: an improved model for assessing their relationship

波形 高斯分布 分类器(UML) 模式识别(心理学) 指数函数 数学 算法 脉搏(音乐) 协变量 计算机科学 人工智能 统计 物理 数学分析 探测器 电信 量子力学 雷达
作者
Cosimo Aliani,E. Rossi,Piergiorgio Francia,Leonardo Bocchi
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:42 (12): 125002-125002 被引量:8
标识
DOI:10.1088/1361-6579/ac3e87
摘要

Objective.Vascular ageing is associated with several alterations, including arterial stiffness and endothelial dysfunction. Such alterations represent an independent factor in the development of cardiovascular disease (CVD). In our previous works we demonstrated the alterations occurring in the vascular system are themselves reflected in the shape of the peripheral waveform; thus, a model that describes the waveform as a sum of Gaussian curves provides a set of parameters that successfully discriminate betweenunder(≤35 years old) andoversubjects (>35 years old). In the present work, we explored the feasibility of a new decomposition model, based on a sum of exponential pulses, applied to the same problem.Approach.The first processing step extracts each pulsation from the input signal and removes the long-term trend using a cubic spline with nodes between consecutive pulsations. After that, a Least Squares fitting algorithm determines the set of optimal model parameters that best approximates each single pulse. The vector of model parameters gives a compact representation of the pulse waveform that constitutes the basis for the classification step. Each subject is associated to his/her 'representative' pulse waveform, obtained by averaging the vector parameters corresponding to all pulses. Finally, a Bayesan classifier has been designed to discriminate the waveforms of under and over subjects, using the leave-one-subject-out validation method.Main results.Results indicate that the fitting procedure reaches a rate of 96% in under subjects and 95% in over subjects and that the Bayesan classifier is able to correctly classify 91% of the subjects with a specificity of 94% and a sensibility of 84%.Significance.This study shows a sensible vascular age estimation accuracy with a multi-exponential model, which may help to predict CVD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
魏猛完成签到,获得积分10
1秒前
活泼蜡烛完成签到,获得积分10
1秒前
含糊的无声完成签到 ,获得积分10
2秒前
鸡蛋完成签到 ,获得积分20
3秒前
叮当发布了新的文献求助30
5秒前
yyy完成签到,获得积分10
5秒前
大个应助hahahaweiwei采纳,获得10
6秒前
诸嵩发布了新的文献求助10
6秒前
科目三应助GinFF采纳,获得10
7秒前
Dr_Shi完成签到,获得积分10
8秒前
zxcvbnm完成签到,获得积分10
9秒前
Superman完成签到 ,获得积分10
10秒前
nicheng完成签到,获得积分10
10秒前
zzw完成签到,获得积分10
11秒前
sunflowers完成签到 ,获得积分10
14秒前
You完成签到,获得积分10
14秒前
14秒前
UP完成签到,获得积分10
15秒前
潇洒的诗桃应助ade采纳,获得10
15秒前
自由的思枫完成签到 ,获得积分10
15秒前
田様应助忧郁的猕猴桃采纳,获得10
15秒前
文艺的青旋完成签到 ,获得积分10
17秒前
19秒前
111完成签到,获得积分10
19秒前
刘佳欣发布了新的文献求助10
20秒前
慕慕完成签到 ,获得积分10
20秒前
薛乎虚完成签到 ,获得积分10
20秒前
852应助1111采纳,获得10
21秒前
YY完成签到,获得积分10
21秒前
CRANE完成签到 ,获得积分10
23秒前
NONO完成签到,获得积分20
23秒前
简单发布了新的文献求助10
25秒前
啊哦完成签到 ,获得积分10
25秒前
26秒前
26秒前
Orange应助zhengly23采纳,获得10
26秒前
Rez完成签到,获得积分10
28秒前
拼搏太英完成签到,获得积分10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268