Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++

跟踪(教育) 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 实时计算 生物 渔业 心理学 教育学 语言学 哲学
作者
He Wang,Song Zhang,Shili Zhao,Qi Wang,Daoliang Li,Ran Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:192: 106512-106512 被引量:170
标识
DOI:10.1016/j.compag.2021.106512
摘要

In recirculating aquaculture system, the abnormal behavior of fish is usually caused by poor water quality, hypoxia or diseases. Delayed recognition of this behavior will lead to large number of fish deaths. Thus, real-time detection and tracking of fish that behaviors abnormally is an effective way to promote the fish welfare and to improve the survival rate as well as economic benefits of aquaculture. However, due to the high-density breeding, the targets in the fish images are often quite small and in occlusion, which causes high false detection and target loss rate. This article proposes a combined end-to-end neural network to detect and track the abnormal behavior of porphyry seabream. The detection algorithm passes the initial value of the target into the tracking algorithm, and the tracking algorithm tracks subsequent frames to achieve end-to-end abnormal fish behavior detection and achieve high-speed and accurate tracking of abnormal behavior individuals. In the target detection part, YOLOV5s is improved by incorporating multi-level features and adding feature mapping. Compared with the original network, the detection precision AP50:95 is increased by 8.8% while AP50 reaches 99.4%. In the target tracking part, this paper achieves multi-target tracking of abnormal fish based on single-target tracking algorithm SiamRPN++. The tracking precision is 76.7%. By combining the two approaches, individual fish with abnormal behavior can be detected precisely and tracked in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AN完成签到,获得积分0
刚刚
火星上小土豆完成签到 ,获得积分10
刚刚
成永福发布了新的文献求助10
1秒前
Cyber_relic发布了新的文献求助10
1秒前
sinlar完成签到,获得积分10
1秒前
2秒前
zwj完成签到,获得积分10
2秒前
2秒前
2秒前
haoooooooooooooo完成签到,获得积分10
3秒前
呵呵完成签到,获得积分10
3秒前
3秒前
神勇马里奥完成签到 ,获得积分10
3秒前
哈哈哈哈哈完成签到,获得积分10
4秒前
背后皮卡丘完成签到 ,获得积分10
4秒前
4秒前
bkagyin应助轻松采纳,获得10
4秒前
CodeCraft应助taotie采纳,获得10
5秒前
我爱科研完成签到,获得积分10
5秒前
5秒前
6秒前
sci大户发布了新的文献求助10
6秒前
Doogie发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
LYB吕发布了新的文献求助10
7秒前
8秒前
RB发布了新的文献求助10
8秒前
乐乐应助lalala采纳,获得10
8秒前
9秒前
今天也要开心Y完成签到,获得积分10
9秒前
9秒前
Cassie发布了新的文献求助10
9秒前
asda发布了新的文献求助10
10秒前
王则华完成签到,获得积分10
11秒前
zyy发布了新的文献求助10
11秒前
11秒前
如意厉完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809