Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++

跟踪(教育) 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 实时计算 生物 渔业 心理学 教育学 语言学 哲学
作者
He Wang,Song Zhang,Shili Zhao,Qi Wang,Daoliang Li,Ran Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:192: 106512-106512 被引量:170
标识
DOI:10.1016/j.compag.2021.106512
摘要

In recirculating aquaculture system, the abnormal behavior of fish is usually caused by poor water quality, hypoxia or diseases. Delayed recognition of this behavior will lead to large number of fish deaths. Thus, real-time detection and tracking of fish that behaviors abnormally is an effective way to promote the fish welfare and to improve the survival rate as well as economic benefits of aquaculture. However, due to the high-density breeding, the targets in the fish images are often quite small and in occlusion, which causes high false detection and target loss rate. This article proposes a combined end-to-end neural network to detect and track the abnormal behavior of porphyry seabream. The detection algorithm passes the initial value of the target into the tracking algorithm, and the tracking algorithm tracks subsequent frames to achieve end-to-end abnormal fish behavior detection and achieve high-speed and accurate tracking of abnormal behavior individuals. In the target detection part, YOLOV5s is improved by incorporating multi-level features and adding feature mapping. Compared with the original network, the detection precision AP50:95 is increased by 8.8% while AP50 reaches 99.4%. In the target tracking part, this paper achieves multi-target tracking of abnormal fish based on single-target tracking algorithm SiamRPN++. The tracking precision is 76.7%. By combining the two approaches, individual fish with abnormal behavior can be detected precisely and tracked in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追梦人关注了科研通微信公众号
刚刚
无语的成仁完成签到,获得积分10
刚刚
李健的粉丝团团长应助陶l采纳,获得10
2秒前
4秒前
5秒前
彭于晏应助文人青采纳,获得10
7秒前
爱库珀应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
聪明凡之应助科研通管家采纳,获得10
9秒前
9秒前
eric888应助科研通管家采纳,获得10
9秒前
王w应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
一一应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
一一应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
Orange应助kelexh采纳,获得10
11秒前
caoruyuan发布了新的文献求助10
11秒前
身处人海完成签到,获得积分10
12秒前
dfghjkl完成签到,获得积分10
12秒前
杨好圆完成签到,获得积分10
12秒前
自由妙竹完成签到 ,获得积分10
15秒前
evvj发布了新的文献求助10
15秒前
mzrrong完成签到 ,获得积分10
15秒前
香蕉觅云应助西西采纳,获得10
15秒前
dfghjkl发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851