Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++

跟踪(教育) 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 实时计算 生物 渔业 心理学 教育学 语言学 哲学
作者
He Wang,Song Zhang,Shili Zhao,Qi Wang,Daoliang Li,Ran Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106512-106512 被引量:119
标识
DOI:10.1016/j.compag.2021.106512
摘要

In recirculating aquaculture system, the abnormal behavior of fish is usually caused by poor water quality, hypoxia or diseases. Delayed recognition of this behavior will lead to large number of fish deaths. Thus, real-time detection and tracking of fish that behaviors abnormally is an effective way to promote the fish welfare and to improve the survival rate as well as economic benefits of aquaculture. However, due to the high-density breeding, the targets in the fish images are often quite small and in occlusion, which causes high false detection and target loss rate. This article proposes a combined end-to-end neural network to detect and track the abnormal behavior of porphyry seabream. The detection algorithm passes the initial value of the target into the tracking algorithm, and the tracking algorithm tracks subsequent frames to achieve end-to-end abnormal fish behavior detection and achieve high-speed and accurate tracking of abnormal behavior individuals. In the target detection part, YOLOV5s is improved by incorporating multi-level features and adding feature mapping. Compared with the original network, the detection precision AP50:95 is increased by 8.8% while AP50 reaches 99.4%. In the target tracking part, this paper achieves multi-target tracking of abnormal fish based on single-target tracking algorithm SiamRPN++. The tracking precision is 76.7%. By combining the two approaches, individual fish with abnormal behavior can be detected precisely and tracked in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助123采纳,获得10
刚刚
刚刚
zwh完成签到,获得积分20
2秒前
2秒前
catalysisman完成签到,获得积分10
3秒前
小思发布了新的文献求助10
3秒前
幸福的初晴发布了新的文献求助200
4秒前
4秒前
2021发布了新的文献求助10
5秒前
ding应助冷静水池采纳,获得10
6秒前
大白完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
科研通AI5应助猪猪hero采纳,获得10
8秒前
老徐发布了新的文献求助10
9秒前
丫丫完成签到,获得积分10
9秒前
10秒前
A宇完成签到,获得积分10
10秒前
11秒前
11秒前
锦李发布了新的文献求助10
11秒前
大模型应助T拐拐采纳,获得10
12秒前
12秒前
Rainnn发布了新的文献求助10
13秒前
14秒前
15秒前
Owen应助Rainnn采纳,获得10
16秒前
魈玖完成签到,获得积分10
16秒前
17秒前
17秒前
乔123发布了新的文献求助10
17秒前
贝贝贝完成签到,获得积分10
17秒前
科研通AI5应助lililiiii采纳,获得150
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
18秒前
orixero应助科研通管家采纳,获得10
18秒前
zzjjxx应助科研通管家采纳,获得10
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034