Quantification of phase-based magnified motion using image enhancement and optical flow techniques

计算机视觉 人工智能 放大倍数 光流 计算机科学 流离失所(心理学) 像素 质心 特征(语言学) 混叠 运动估计 滤波器(信号处理) 亚像素渲染 图像(数学) 语言学 哲学 心理学 心理治疗师
作者
Nicholas A. Valente,Celso T. do Cabo,Zhu Mao,Christopher Niezrecki
出处
期刊:Measurement [Elsevier BV]
卷期号:189: 110508-110508 被引量:25
标识
DOI:10.1016/j.measurement.2021.110508
摘要

Phase-based motion magnification (PMM) has been widely implemented in the field of vibration and structural health monitoring for its non-invasive nature to reveal hidden system dynamics. The approach has shown success in magnifying subtle structural oscillatory motions for system identification and observation of operating shapes. Although this method has been implemented and is becoming increasingly popular, the amount of physical motion associated with the degree of magnification has yet to be quantified. Within this work, a synthetic simulation containing an oscillating geometry is presented to quantify its magnified pixel displacement. Computer vision techniques including centroid detection and edge-feature tracking via optical flow are adopted to quantify the relation between amplification and true motion. The quantification techniques are also tested and verified on an experimental structure with the use of a high-speed optical sensing system. Motion artifacts distort the integrity of the magnified motion, which can pose problems for accurate quantification. Image enhancement techniques such as the two-dimensional Wiener filter and Total Variation Denoising (TVD) are used to smooth the high-frequency content that is observed following magnification. Associative error concerning a discrete shift of the Gabor wavelet is analytically derived to show the justification of spatial aliasing. An adjusted bound on magnification is presented to display the limitations of the technique, while providing insight into associated error. The results of this work will help to enhance PMM from a qualitative evaluation tool to a quantitative measurement tool of magnified displacements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王香香发布了新的文献求助10
刚刚
刚刚
1111完成签到,获得积分10
刚刚
易壹完成签到,获得积分10
1秒前
1秒前
2秒前
小冬猫完成签到 ,获得积分10
2秒前
bk2020113458完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
3秒前
3秒前
子车友易发布了新的文献求助10
4秒前
王九八发布了新的文献求助10
4秒前
曙光森林完成签到,获得积分10
5秒前
phil完成签到,获得积分10
6秒前
无名完成签到,获得积分10
7秒前
一丸完成签到 ,获得积分10
8秒前
受伤访波完成签到,获得积分10
8秒前
8秒前
就叫小王吧完成签到,获得积分10
8秒前
FashionBoy应助钮卿采纳,获得10
8秒前
拼搏念蕾完成签到 ,获得积分10
9秒前
10秒前
orixero应助科研通管家采纳,获得30
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得20
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
somin应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得30
10秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118