Quantification of phase-based magnified motion using image enhancement and optical flow techniques

计算机视觉 人工智能 放大倍数 光流 计算机科学 流离失所(心理学) 像素 质心 特征(语言学) 混叠 运动估计 滤波器(信号处理) 亚像素渲染 图像(数学) 语言学 哲学 心理学 心理治疗师
作者
Nicholas A. Valente,Celso T. do Cabo,Zhu Mao,Christopher Niezrecki
出处
期刊:Measurement [Elsevier]
卷期号:189: 110508-110508 被引量:25
标识
DOI:10.1016/j.measurement.2021.110508
摘要

Phase-based motion magnification (PMM) has been widely implemented in the field of vibration and structural health monitoring for its non-invasive nature to reveal hidden system dynamics. The approach has shown success in magnifying subtle structural oscillatory motions for system identification and observation of operating shapes. Although this method has been implemented and is becoming increasingly popular, the amount of physical motion associated with the degree of magnification has yet to be quantified. Within this work, a synthetic simulation containing an oscillating geometry is presented to quantify its magnified pixel displacement. Computer vision techniques including centroid detection and edge-feature tracking via optical flow are adopted to quantify the relation between amplification and true motion. The quantification techniques are also tested and verified on an experimental structure with the use of a high-speed optical sensing system. Motion artifacts distort the integrity of the magnified motion, which can pose problems for accurate quantification. Image enhancement techniques such as the two-dimensional Wiener filter and Total Variation Denoising (TVD) are used to smooth the high-frequency content that is observed following magnification. Associative error concerning a discrete shift of the Gabor wavelet is analytically derived to show the justification of spatial aliasing. An adjusted bound on magnification is presented to display the limitations of the technique, while providing insight into associated error. The results of this work will help to enhance PMM from a qualitative evaluation tool to a quantitative measurement tool of magnified displacements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助ZYH采纳,获得10
1秒前
2秒前
3秒前
寒冷的迎梦完成签到,获得积分10
3秒前
ff发布了新的文献求助10
3秒前
destiny发布了新的文献求助10
3秒前
所所应助Eurus采纳,获得10
4秒前
123关注了科研通微信公众号
6秒前
111发布了新的文献求助10
7秒前
科研通AI2S应助姜一桃采纳,获得10
8秒前
9秒前
简单夏之发布了新的文献求助30
9秒前
丁论文发布了新的文献求助10
10秒前
努力学习的小王完成签到,获得积分10
11秒前
xx完成签到,获得积分10
11秒前
汐月完成签到,获得积分20
11秒前
orixero应助zhw采纳,获得10
12秒前
och3完成签到,获得积分10
12秒前
lizhaonian给lizhaonian的求助进行了留言
13秒前
fangyaqi发布了新的文献求助10
13秒前
汉堡包应助勤奋的蜗牛采纳,获得10
14秒前
14秒前
14秒前
搜集达人应助歪歪采纳,获得10
15秒前
cuipanda发布了新的文献求助30
16秒前
科研小白狗完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
destiny完成签到,获得积分10
19秒前
ZYH发布了新的文献求助10
19秒前
123发布了新的文献求助10
19秒前
xiaoyao完成签到,获得积分10
20秒前
希望天下0贩的0应助123采纳,获得10
20秒前
汤圆圆儿完成签到,获得积分20
20秒前
资紫丝发布了新的文献求助20
20秒前
lei发布了新的文献求助10
21秒前
T_MC郭发布了新的文献求助10
22秒前
22秒前
领导范儿应助乐观发卡采纳,获得10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943