PTML modeling for peptide discovery: in silico design of non-hemolytic peptides with antihypertensive activity

生物信息学 虚拟筛选 计算生物学 氨基酸 化学 药物发现 计算机科学 药理学 生物信息学 组合化学 生物化学 医学 生物 基因
作者
Valeria V. Kleandrova,Julio Alberto Rojas-Vargas,Marcus T. Scotti,Alejandro Speck‐Planche
出处
期刊:Molecular Diversity [Springer Nature]
卷期号:26 (5): 2523-2534 被引量:5
标识
DOI:10.1007/s11030-021-10350-z
摘要

Hypertension is a medical condition that affects millions of people worldwide. Despite the high efficacy of the current antihypertensive drugs, they are associated with serious side effects. Peptides constitute attractive options for chemical therapy against hypertension, and computational models can accelerate the design of antihypertensive peptides. Yet, to the best of our knowledge, all the in silico models predict only the antihypertensive activity of peptides while neglecting their inherent toxic potential to red blood cells. In this work, we report the first sequence-based model that combines perturbation theory and machine learning through multilayer perceptron networks (SB-PTML-MLP) to enable the simultaneous screening of antihypertensive activity and hemotoxicity of peptides. We have interpreted the molecular descriptors present in the model from a physicochemical and structural point of view. By strictly following such interpretations as guidelines, we performed two tasks. First, we selected amino acids with favorable contributions to both the increase of the antihypertensive activity and the diminution of hemotoxicity. Then, we assembled those suitable amino acids, virtually designing peptides that were predicted by the SB-PTML-MLP model as antihypertensive agents exhibiting low hemotoxicity. The potentiality of the SB-PTML-MLP model as a tool for designing potent and safe antihypertensive peptides was confirmed by predictions performed by online computational tools reported in the scientific literature. The methodology presented here can be extended to other pharmacological applications of peptides. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小阿静发布了新的文献求助10
刚刚
yyy发布了新的文献求助50
1秒前
ding应助WangRui采纳,获得10
2秒前
111完成签到,获得积分20
3秒前
4秒前
111发布了新的文献求助30
9秒前
薛妖怪完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
14秒前
hello小鹿完成签到,获得积分10
15秒前
maox1aoxin应助lian采纳,获得20
15秒前
啦啦啦发布了新的文献求助10
16秒前
16秒前
IBMffff应助yeyeye采纳,获得10
16秒前
无奈满天发布了新的文献求助10
17秒前
17秒前
yun发布了新的文献求助10
18秒前
jiuyuan135发布了新的文献求助10
19秒前
SCUTnwj完成签到,获得积分10
19秒前
suye完成签到,获得积分10
20秒前
21秒前
LZ发布了新的文献求助10
23秒前
不配.应助yyy采纳,获得10
26秒前
树上熊发布了新的文献求助10
26秒前
hoshi完成签到 ,获得积分10
26秒前
30秒前
yufanhui完成签到,获得积分0
31秒前
ding应助LZ采纳,获得10
31秒前
32秒前
勤奋的小伙完成签到,获得积分10
34秒前
孑轸完成签到,获得积分10
34秒前
xiong完成签到 ,获得积分10
34秒前
S.完成签到 ,获得积分10
34秒前
aaaaa完成签到,获得积分10
34秒前
kevin发布了新的文献求助10
35秒前
orixero应助无奈满天采纳,获得10
36秒前
IBMffff应助生产队的建设者采纳,获得10
36秒前
37秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270654
求助须知:如何正确求助?哪些是违规求助? 2910067
关于积分的说明 8352062
捐赠科研通 2580504
什么是DOI,文献DOI怎么找? 1403528
科研通“疑难数据库(出版商)”最低求助积分说明 655854
邀请新用户注册赠送积分活动 635223