亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PTML modeling for peptide discovery: in silico design of non-hemolytic peptides with antihypertensive activity

生物信息学 虚拟筛选 计算生物学 氨基酸 化学 药物发现 计算机科学 药理学 生物信息学 组合化学 生物化学 医学 生物 基因
作者
Valeria V. Kleandrova,Julio Alberto Rojas-Vargas,Marcus Tullius Scotti,Alejandro Speck‐Planche
出处
期刊:Molecular Diversity [Springer Nature]
卷期号:26 (5): 2523-2534 被引量:11
标识
DOI:10.1007/s11030-021-10350-z
摘要

Hypertension is a medical condition that affects millions of people worldwide. Despite the high efficacy of the current antihypertensive drugs, they are associated with serious side effects. Peptides constitute attractive options for chemical therapy against hypertension, and computational models can accelerate the design of antihypertensive peptides. Yet, to the best of our knowledge, all the in silico models predict only the antihypertensive activity of peptides while neglecting their inherent toxic potential to red blood cells. In this work, we report the first sequence-based model that combines perturbation theory and machine learning through multilayer perceptron networks (SB-PTML-MLP) to enable the simultaneous screening of antihypertensive activity and hemotoxicity of peptides. We have interpreted the molecular descriptors present in the model from a physicochemical and structural point of view. By strictly following such interpretations as guidelines, we performed two tasks. First, we selected amino acids with favorable contributions to both the increase of the antihypertensive activity and the diminution of hemotoxicity. Then, we assembled those suitable amino acids, virtually designing peptides that were predicted by the SB-PTML-MLP model as antihypertensive agents exhibiting low hemotoxicity. The potentiality of the SB-PTML-MLP model as a tool for designing potent and safe antihypertensive peptides was confirmed by predictions performed by online computational tools reported in the scientific literature. The methodology presented here can be extended to other pharmacological applications of peptides. Graphical abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极2023完成签到 ,获得积分0
15秒前
29秒前
37秒前
兼听则明完成签到,获得积分10
44秒前
迷途小书童完成签到,获得积分10
46秒前
1分钟前
NEKO发布了新的文献求助30
1分钟前
ramshoshi完成签到,获得积分10
1分钟前
Damon完成签到,获得积分10
1分钟前
Lexi完成签到,获得积分10
1分钟前
烟花应助江洋大盗采纳,获得10
1分钟前
1分钟前
江洋大盗发布了新的文献求助10
1分钟前
wynne313完成签到 ,获得积分10
1分钟前
引力完成签到,获得积分10
2分钟前
李彦完成签到,获得积分10
2分钟前
淡定的幻枫完成签到 ,获得积分10
2分钟前
七色光完成签到,获得积分10
2分钟前
小黑超努力完成签到 ,获得积分10
3分钟前
3分钟前
美满的芹发布了新的文献求助30
3分钟前
arui发布了新的文献求助10
3分钟前
3分钟前
wcj发布了新的文献求助10
3分钟前
幸福的鑫鹏完成签到 ,获得积分10
3分钟前
Demi_Ming完成签到,获得积分10
3分钟前
英姑应助美满的芹采纳,获得50
3分钟前
wmz完成签到 ,获得积分10
3分钟前
zzzz完成签到 ,获得积分10
3分钟前
halo应助zakaria采纳,获得40
4分钟前
温暖的绮南完成签到,获得积分10
4分钟前
arui完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
figure完成签到 ,获得积分10
4分钟前
彭于晏应助NEKO采纳,获得10
4分钟前
香菜张完成签到,获得积分10
4分钟前
李阳完成签到 ,获得积分10
5分钟前
脑洞疼应助满意的世界采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603300
求助须知:如何正确求助?哪些是违规求助? 4688366
关于积分的说明 14853414
捐赠科研通 4689412
什么是DOI,文献DOI怎么找? 2540611
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471608