PTML modeling for peptide discovery: in silico design of non-hemolytic peptides with antihypertensive activity

生物信息学 虚拟筛选 计算生物学 氨基酸 化学 药物发现 计算机科学 药理学 生物信息学 组合化学 生物化学 医学 生物 基因
作者
Valeria V. Kleandrova,Julio Alberto Rojas-Vargas,Marcus Tullius Scotti,Alejandro Speck‐Planche
出处
期刊:Molecular Diversity [Springer Nature]
卷期号:26 (5): 2523-2534 被引量:11
标识
DOI:10.1007/s11030-021-10350-z
摘要

Hypertension is a medical condition that affects millions of people worldwide. Despite the high efficacy of the current antihypertensive drugs, they are associated with serious side effects. Peptides constitute attractive options for chemical therapy against hypertension, and computational models can accelerate the design of antihypertensive peptides. Yet, to the best of our knowledge, all the in silico models predict only the antihypertensive activity of peptides while neglecting their inherent toxic potential to red blood cells. In this work, we report the first sequence-based model that combines perturbation theory and machine learning through multilayer perceptron networks (SB-PTML-MLP) to enable the simultaneous screening of antihypertensive activity and hemotoxicity of peptides. We have interpreted the molecular descriptors present in the model from a physicochemical and structural point of view. By strictly following such interpretations as guidelines, we performed two tasks. First, we selected amino acids with favorable contributions to both the increase of the antihypertensive activity and the diminution of hemotoxicity. Then, we assembled those suitable amino acids, virtually designing peptides that were predicted by the SB-PTML-MLP model as antihypertensive agents exhibiting low hemotoxicity. The potentiality of the SB-PTML-MLP model as a tool for designing potent and safe antihypertensive peptides was confirmed by predictions performed by online computational tools reported in the scientific literature. The methodology presented here can be extended to other pharmacological applications of peptides. Graphical abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于雷是我发布了新的文献求助10
1秒前
花火琉璃完成签到,获得积分10
1秒前
1秒前
麦乐迪发布了新的文献求助30
1秒前
xiaohanzai88完成签到,获得积分10
2秒前
xiaojin完成签到,获得积分10
3秒前
LA排骨完成签到,获得积分10
3秒前
3秒前
4秒前
聪慧的发布了新的文献求助10
4秒前
BUG发布了新的文献求助10
5秒前
年糕完成签到,获得积分10
5秒前
项歌完成签到,获得积分10
6秒前
more发布了新的文献求助10
6秒前
易水寒完成签到,获得积分10
7秒前
kk完成签到,获得积分10
8秒前
科研通AI6应助Dong213采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
zcxxxxxxx完成签到,获得积分10
10秒前
10秒前
美好谷芹发布了新的文献求助10
10秒前
研友_VZG7GZ应助zhang_y2采纳,获得10
10秒前
havin给havin的求助进行了留言
11秒前
111发布了新的文献求助10
11秒前
more完成签到,获得积分10
11秒前
罗鸯鸯发布了新的文献求助10
11秒前
东木耳语完成签到,获得积分10
11秒前
小七2022完成签到,获得积分10
13秒前
14秒前
ddd完成签到,获得积分10
14秒前
14秒前
Demon完成签到,获得积分10
14秒前
lll发布了新的文献求助10
15秒前
丘比特应助哈基米哈吉采纳,获得10
16秒前
16秒前
16秒前
17秒前
开朗的雁发布了新的文献求助30
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154