PTML modeling for peptide discovery: in silico design of non-hemolytic peptides with antihypertensive activity

生物信息学 虚拟筛选 计算生物学 氨基酸 化学 药物发现 计算机科学 药理学 生物信息学 组合化学 生物化学 医学 生物 基因
作者
Valeria V. Kleandrova,Julio Alberto Rojas-Vargas,Marcus Tullius Scotti,Alejandro Speck‐Planche
出处
期刊:Molecular Diversity [Springer Science+Business Media]
卷期号:26 (5): 2523-2534 被引量:11
标识
DOI:10.1007/s11030-021-10350-z
摘要

Hypertension is a medical condition that affects millions of people worldwide. Despite the high efficacy of the current antihypertensive drugs, they are associated with serious side effects. Peptides constitute attractive options for chemical therapy against hypertension, and computational models can accelerate the design of antihypertensive peptides. Yet, to the best of our knowledge, all the in silico models predict only the antihypertensive activity of peptides while neglecting their inherent toxic potential to red blood cells. In this work, we report the first sequence-based model that combines perturbation theory and machine learning through multilayer perceptron networks (SB-PTML-MLP) to enable the simultaneous screening of antihypertensive activity and hemotoxicity of peptides. We have interpreted the molecular descriptors present in the model from a physicochemical and structural point of view. By strictly following such interpretations as guidelines, we performed two tasks. First, we selected amino acids with favorable contributions to both the increase of the antihypertensive activity and the diminution of hemotoxicity. Then, we assembled those suitable amino acids, virtually designing peptides that were predicted by the SB-PTML-MLP model as antihypertensive agents exhibiting low hemotoxicity. The potentiality of the SB-PTML-MLP model as a tool for designing potent and safe antihypertensive peptides was confirmed by predictions performed by online computational tools reported in the scientific literature. The methodology presented here can be extended to other pharmacological applications of peptides. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鹅鹅鹅发布了新的文献求助10
1秒前
Solar_Parsifal完成签到,获得积分10
1秒前
Time完成签到,获得积分10
2秒前
甜甜的静柏完成签到 ,获得积分10
2秒前
羞涩的渊思应助XieQinxie采纳,获得10
2秒前
倩倩芊芊完成签到,获得积分10
2秒前
2秒前
lu应助风吹而过采纳,获得30
2秒前
吴建文发布了新的文献求助10
2秒前
牛牛完成签到,获得积分10
3秒前
风的味道完成签到,获得积分10
3秒前
wenjing完成签到,获得积分10
4秒前
pcb完成签到,获得积分10
4秒前
早起完成签到,获得积分10
4秒前
zxh完成签到,获得积分10
5秒前
葵小葵完成签到,获得积分10
5秒前
李建行完成签到,获得积分10
5秒前
柳沧海完成签到,获得积分10
6秒前
6秒前
奋斗灵竹完成签到,获得积分10
6秒前
格非完成签到,获得积分10
7秒前
xiaxue发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
tp040900发布了新的文献求助10
9秒前
冬凌草应助生菜采纳,获得20
10秒前
莫封叶完成签到,获得积分10
12秒前
john完成签到,获得积分10
12秒前
clocksoar完成签到,获得积分10
12秒前
12秒前
12秒前
ding应助慈祥的煎蛋采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
12秒前
HW完成签到 ,获得积分10
13秒前
yoyo完成签到 ,获得积分10
13秒前
zoe完成签到,获得积分10
13秒前
Tangyartie完成签到 ,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259