Segmentation and Linear Measurement for Body Composition Analysis using Slice-O-Matic and Horos

脂肪组织 磁共振成像 分割 医学 腰椎 骨骼肌 肌萎缩 皮下脂肪组织 计算机科学 人工智能 解剖 放射科 内科学
作者
Sean Steele,Fang-Yi Lin,Thien‐Linh Le,A Medline,Michelle Higgins,Alex Sandberg,Sean Evans,Gordon Hong,Milton Williams,Mehmet Asım Bilen,Sarah P. Psutka,Kenneth Ogan,Viraj A. Master
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (169) 被引量:13
标识
DOI:10.3791/61674
摘要

Body composition is associated with risk of disease progression and treatment complications in a variety of conditions. Therefore, quantification of skeletal muscle mass and adipose tissues on Computed Tomography (CT) and/or Magnetic Resonance Imaging (MRI) may inform surgery risk evaluation and disease prognosis. This article describes two quantification methods originally described by Mourtzakis et al. and Avrutin et al.: tissue segmentation and linear measurement of skeletal muscle. Patients' cross-sectional image at the midpoint of the third lumbar vertebra was obtained for both measurements. For segmentation, the images were imported into Slice-O-Matic and colored for skeletal muscle, intramuscular adipose tissue, visceral adipose tissue, and subcutaneous adipose tissue. Then, surface areas of each tissue type were calculated using the tag surface area function. For linear measurements, the height and width of bilateral psoas and paraspinal muscles at the level of the third lumbar vertebra are measured and the calculation using these four values yield the estimated skeletal muscle mass. Segmentation analysis provides quantitative, comprehensive information about the patients' body composition, which can then be correlated with disease progression. However, the process is more time-consuming and requires specialized training. Linear measurements are an efficient and clinic-friendly tool for quick preoperative evaluation. However, linear measurements do not provide information on adipose tissue composition. Nonetheless, these methods have wide applications in a variety of diseases to predict surgical outcomes, risk of disease progression and inform treatment options for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榴下晨光完成签到,获得积分10
2秒前
SYLH应助DDDuan采纳,获得10
3秒前
3秒前
4秒前
二枫忆桑完成签到,获得积分10
4秒前
田様应助勤奋的一刀采纳,获得10
5秒前
隐形曼青应助派大星采纳,获得10
5秒前
贝贝贝贝贝贝舒适的休息下完成签到 ,获得积分10
6秒前
SYLH应助巧兮采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Han发布了新的文献求助30
8秒前
8秒前
Zzzzzzz发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
玩命做科研完成签到,获得积分10
11秒前
bkagyin应助朴素的曼易采纳,获得10
12秒前
昵称发布了新的文献求助10
12秒前
kyt完成签到,获得积分10
13秒前
超级老三发布了新的文献求助10
14秒前
hello完成签到,获得积分10
14秒前
空空发布了新的文献求助10
14秒前
15秒前
王木木发布了新的文献求助10
16秒前
杰尼龟完成签到,获得积分10
16秒前
17秒前
17秒前
鬼火完成签到,获得积分10
18秒前
脑洞疼应助桉韵沁采纳,获得10
18秒前
Hh发布了新的文献求助10
19秒前
年轻的仙人掌完成签到,获得积分10
20秒前
21秒前
yizhi发布了新的文献求助10
22秒前
wangyr11完成签到,获得积分10
24秒前
66m37发布了新的文献求助10
25秒前
25秒前
半两月光发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350