The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation

样品(材料) 服务(商务) 医疗保健 服务质量 过程(计算) 营销 质量(理念) 计算机科学 业务 经济 哲学 化学 认识论 色谱法 经济增长 操作系统
作者
Yuqian Xu,Mor Armony,Anindya Ghose
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (12): 7344-7361 被引量:114
标识
DOI:10.1287/mnsc.2020.3879
摘要

Social media platforms for healthcare services are changing how patients choose physicians. The digitization of healthcare reviews has been providing additional information to patients when choosing their physicians. On the other hand, the growing online information introduces more uncertainty among providers regarding the expected future demand and how different service features can affect patient decisions. In this paper, we derive various service-quality proxies from online reviews and show that leveraging textual information can derive useful operational measures to better understand patient choices. To do so, we study a unique data set from one of the leading appointment-booking websites in the United States. We derive from the text reviews the seven most frequently mentioned topics among patients, namely, bedside manner, diagnosis accuracy, waiting time, service time, insurance process, physician knowledge, and office environment, and then incorporate these service features into a random-coefficient choice model to quantify the economic values of these service-quality proxies. By introducing quality proxies from text reviews, we find the predictive power of patient choice increases significantly, for example, a 6%–12% improvement measured by mean squared error for both in-sample and out-of-sample tests. In addition, our estimation results indicate that contextual description may better characterize users’ perceived quality than numerical ratings on the same service feature. Broadly speaking, this paper shows how to incorporate textual information into an econometric model to understand patient choice in healthcare delivery. Our interdisciplinary approach provides a framework that combines machine learning and structural modeling techniques to advance the literature in empirical operations management, information systems, and marketing. This paper was accepted by David Simchi-Levi, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
97b1完成签到,获得积分10
1秒前
2秒前
上官若男应助韩豆乐采纳,获得10
2秒前
wanci应助湉湉采纳,获得10
2秒前
hehe完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
mew桑发布了新的文献求助10
4秒前
FashionBoy应助六初采纳,获得10
4秒前
4秒前
李健应助kururu采纳,获得10
4秒前
cxz完成签到,获得积分10
5秒前
CCCCCL完成签到,获得积分10
5秒前
wzx发布了新的文献求助10
5秒前
周三发布了新的文献求助10
6秒前
DoLaso发布了新的文献求助10
6秒前
英俊的铭应助钦林采纳,获得10
6秒前
8秒前
yqx发布了新的文献求助10
8秒前
顺心醉蝶完成签到 ,获得积分10
9秒前
10秒前
10秒前
CipherSage应助mgf采纳,获得10
10秒前
11秒前
11秒前
氧气泡泡发布了新的文献求助10
11秒前
大个应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
胥风应助科研通管家采纳,获得10
12秒前
仔仔在发布了新的文献求助10
12秒前
JJS完成签到,获得积分20
12秒前
13秒前
Twonej应助科研通管家采纳,获得30
13秒前
Twonej应助科研通管家采纳,获得30
13秒前
Akim应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713248
求助须知:如何正确求助?哪些是违规求助? 5214511
关于积分的说明 15270206
捐赠科研通 4865029
什么是DOI,文献DOI怎么找? 2611814
邀请新用户注册赠送积分活动 1562053
关于科研通互助平台的介绍 1519295