The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation

样品(材料) 服务(商务) 医疗保健 服务质量 过程(计算) 营销 质量(理念) 计算机科学 业务 经济 哲学 化学 认识论 色谱法 经济增长 操作系统
作者
Yuqian Xu,Mor Armony,Anindya Ghose
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (12): 7344-7361 被引量:114
标识
DOI:10.1287/mnsc.2020.3879
摘要

Social media platforms for healthcare services are changing how patients choose physicians. The digitization of healthcare reviews has been providing additional information to patients when choosing their physicians. On the other hand, the growing online information introduces more uncertainty among providers regarding the expected future demand and how different service features can affect patient decisions. In this paper, we derive various service-quality proxies from online reviews and show that leveraging textual information can derive useful operational measures to better understand patient choices. To do so, we study a unique data set from one of the leading appointment-booking websites in the United States. We derive from the text reviews the seven most frequently mentioned topics among patients, namely, bedside manner, diagnosis accuracy, waiting time, service time, insurance process, physician knowledge, and office environment, and then incorporate these service features into a random-coefficient choice model to quantify the economic values of these service-quality proxies. By introducing quality proxies from text reviews, we find the predictive power of patient choice increases significantly, for example, a 6%–12% improvement measured by mean squared error for both in-sample and out-of-sample tests. In addition, our estimation results indicate that contextual description may better characterize users’ perceived quality than numerical ratings on the same service feature. Broadly speaking, this paper shows how to incorporate textual information into an econometric model to understand patient choice in healthcare delivery. Our interdisciplinary approach provides a framework that combines machine learning and structural modeling techniques to advance the literature in empirical operations management, information systems, and marketing. This paper was accepted by David Simchi-Levi, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助David采纳,获得10
刚刚
1秒前
肥皂剧发布了新的文献求助10
1秒前
susu发布了新的文献求助10
2秒前
丰富的莛完成签到,获得积分10
2秒前
916应助nabla采纳,获得10
2秒前
李健应助TT提采纳,获得10
4秒前
ww发布了新的文献求助10
4秒前
杨梅关注了科研通微信公众号
4秒前
5秒前
七个小矮人完成签到,获得积分10
6秒前
丰富的莛发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
kuichen完成签到,获得积分10
6秒前
泓凯骏完成签到 ,获得积分10
7秒前
7秒前
田様应助猪猪hero采纳,获得10
7秒前
9秒前
所所应助fordream采纳,获得10
10秒前
CipherSage应助fordream采纳,获得10
10秒前
11秒前
今后应助含糊的冰安采纳,获得10
12秒前
BINGBING1230发布了新的文献求助30
12秒前
12秒前
LHF发布了新的文献求助10
14秒前
酷波er应助开心不评采纳,获得10
15秒前
15秒前
脑洞疼应助BINGBING1230采纳,获得10
16秒前
杨梅发布了新的文献求助10
16秒前
Wang完成签到,获得积分10
17秒前
18秒前
18秒前
肥皂剧完成签到,获得积分10
18秒前
18秒前
fordream完成签到,获得积分10
19秒前
never发布了新的文献求助10
19秒前
花海完成签到,获得积分10
19秒前
huhu完成签到 ,获得积分10
19秒前
猪猪hero发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315