已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation

样品(材料) 服务(商务) 医疗保健 服务质量 过程(计算) 营销 质量(理念) 计算机科学 业务 经济 哲学 化学 认识论 色谱法 经济增长 操作系统
作者
Yuqian Xu,Mor Armony,Anindya Ghose
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (12): 7344-7361 被引量:114
标识
DOI:10.1287/mnsc.2020.3879
摘要

Social media platforms for healthcare services are changing how patients choose physicians. The digitization of healthcare reviews has been providing additional information to patients when choosing their physicians. On the other hand, the growing online information introduces more uncertainty among providers regarding the expected future demand and how different service features can affect patient decisions. In this paper, we derive various service-quality proxies from online reviews and show that leveraging textual information can derive useful operational measures to better understand patient choices. To do so, we study a unique data set from one of the leading appointment-booking websites in the United States. We derive from the text reviews the seven most frequently mentioned topics among patients, namely, bedside manner, diagnosis accuracy, waiting time, service time, insurance process, physician knowledge, and office environment, and then incorporate these service features into a random-coefficient choice model to quantify the economic values of these service-quality proxies. By introducing quality proxies from text reviews, we find the predictive power of patient choice increases significantly, for example, a 6%–12% improvement measured by mean squared error for both in-sample and out-of-sample tests. In addition, our estimation results indicate that contextual description may better characterize users’ perceived quality than numerical ratings on the same service feature. Broadly speaking, this paper shows how to incorporate textual information into an econometric model to understand patient choice in healthcare delivery. Our interdisciplinary approach provides a framework that combines machine learning and structural modeling techniques to advance the literature in empirical operations management, information systems, and marketing. This paper was accepted by David Simchi-Levi, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangjian完成签到,获得积分10
刚刚
洁净的小熊猫完成签到,获得积分10
刚刚
小方完成签到,获得积分10
1秒前
毛爱民发布了新的文献求助10
2秒前
激昂的吐司完成签到,获得积分20
4秒前
5秒前
666发布了新的文献求助10
6秒前
科研小白完成签到 ,获得积分10
11秒前
王者归来完成签到,获得积分10
11秒前
薄荷源星球完成签到 ,获得积分10
11秒前
cangmingzi完成签到,获得积分10
13秒前
酷波er应助激昂的吐司采纳,获得20
14秒前
ZHL应助Bellis采纳,获得20
15秒前
奋斗的绝悟完成签到,获得积分10
15秒前
自信书竹完成签到 ,获得积分10
15秒前
wanci应助可可钳采纳,获得10
16秒前
美丽的若云完成签到 ,获得积分10
19秒前
20秒前
20秒前
li完成签到 ,获得积分10
22秒前
一粟完成签到 ,获得积分10
22秒前
23秒前
oleskarabach发布了新的文献求助10
24秒前
25秒前
feifei完成签到,获得积分20
25秒前
Zhaoyuemeng完成签到 ,获得积分10
27秒前
李李完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
达笙完成签到 ,获得积分10
30秒前
31秒前
bkagyin应助怡然的天思采纳,获得10
32秒前
adinike发布了新的文献求助10
32秒前
xcxcxcily完成签到 ,获得积分10
32秒前
33秒前
feifei发布了新的文献求助10
34秒前
极速小鱼发布了新的文献求助10
35秒前
熬夜波比应助长度2到采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759