The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation

样品(材料) 服务(商务) 医疗保健 服务质量 过程(计算) 营销 质量(理念) 计算机科学 业务 经济 哲学 化学 认识论 色谱法 经济增长 操作系统
作者
Yuqian Xu,Mor Armony,Anindya Ghose
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (12): 7344-7361 被引量:114
标识
DOI:10.1287/mnsc.2020.3879
摘要

Social media platforms for healthcare services are changing how patients choose physicians. The digitization of healthcare reviews has been providing additional information to patients when choosing their physicians. On the other hand, the growing online information introduces more uncertainty among providers regarding the expected future demand and how different service features can affect patient decisions. In this paper, we derive various service-quality proxies from online reviews and show that leveraging textual information can derive useful operational measures to better understand patient choices. To do so, we study a unique data set from one of the leading appointment-booking websites in the United States. We derive from the text reviews the seven most frequently mentioned topics among patients, namely, bedside manner, diagnosis accuracy, waiting time, service time, insurance process, physician knowledge, and office environment, and then incorporate these service features into a random-coefficient choice model to quantify the economic values of these service-quality proxies. By introducing quality proxies from text reviews, we find the predictive power of patient choice increases significantly, for example, a 6%–12% improvement measured by mean squared error for both in-sample and out-of-sample tests. In addition, our estimation results indicate that contextual description may better characterize users’ perceived quality than numerical ratings on the same service feature. Broadly speaking, this paper shows how to incorporate textual information into an econometric model to understand patient choice in healthcare delivery. Our interdisciplinary approach provides a framework that combines machine learning and structural modeling techniques to advance the literature in empirical operations management, information systems, and marketing. This paper was accepted by David Simchi-Levi, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阳光新筠完成签到,获得积分10
1秒前
2秒前
爆米花应助悦耳的曼安采纳,获得10
2秒前
3秒前
4秒前
阔达萧完成签到,获得积分10
4秒前
tang发布了新的文献求助10
5秒前
huiwanfeifei发布了新的文献求助10
5秒前
爆爆爆炸了完成签到 ,获得积分10
6秒前
6秒前
可冥发布了新的文献求助10
6秒前
斗宗强者发布了新的文献求助10
7秒前
1021完成签到,获得积分10
8秒前
滕皓轩发布了新的文献求助10
9秒前
11秒前
tang完成签到,获得积分10
11秒前
柯南道尔完成签到,获得积分10
12秒前
wang完成签到,获得积分10
12秒前
柳叶洋完成签到,获得积分10
12秒前
13秒前
ZuoqiHe完成签到,获得积分10
14秒前
Neuronicus完成签到,获得积分10
14秒前
米米完成签到,获得积分10
14秒前
生物云完成签到,获得积分10
15秒前
俊俏的紫菜应助骆凤灵采纳,获得150
15秒前
janejane发布了新的文献求助10
16秒前
16秒前
lsh发布了新的文献求助10
16秒前
16秒前
17秒前
科研通AI2S应助huiwanfeifei采纳,获得10
17秒前
pig120完成签到 ,获得积分10
17秒前
17秒前
从容的聋五完成签到,获得积分10
17秒前
19秒前
19秒前
20秒前
解语花发布了新的文献求助10
21秒前
Soo完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605599
求助须知:如何正确求助?哪些是违规求助? 4690155
关于积分的说明 14862533
捐赠科研通 4702014
什么是DOI,文献DOI怎么找? 2542183
邀请新用户注册赠送积分活动 1507817
关于科研通互助平台的介绍 1472113