The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation

样品(材料) 服务(商务) 医疗保健 服务质量 过程(计算) 营销 质量(理念) 计算机科学 业务 经济 哲学 化学 认识论 色谱法 经济增长 操作系统
作者
Yuqian Xu,Mor Armony,Anindya Ghose
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (12): 7344-7361 被引量:124
标识
DOI:10.1287/mnsc.2020.3879
摘要

Social media platforms for healthcare services are changing how patients choose physicians. The digitization of healthcare reviews has been providing additional information to patients when choosing their physicians. On the other hand, the growing online information introduces more uncertainty among providers regarding the expected future demand and how different service features can affect patient decisions. In this paper, we derive various service-quality proxies from online reviews and show that leveraging textual information can derive useful operational measures to better understand patient choices. To do so, we study a unique data set from one of the leading appointment-booking websites in the United States. We derive from the text reviews the seven most frequently mentioned topics among patients, namely, bedside manner, diagnosis accuracy, waiting time, service time, insurance process, physician knowledge, and office environment, and then incorporate these service features into a random-coefficient choice model to quantify the economic values of these service-quality proxies. By introducing quality proxies from text reviews, we find the predictive power of patient choice increases significantly, for example, a 6%–12% improvement measured by mean squared error for both in-sample and out-of-sample tests. In addition, our estimation results indicate that contextual description may better characterize users’ perceived quality than numerical ratings on the same service feature. Broadly speaking, this paper shows how to incorporate textual information into an econometric model to understand patient choice in healthcare delivery. Our interdisciplinary approach provides a framework that combines machine learning and structural modeling techniques to advance the literature in empirical operations management, information systems, and marketing. This paper was accepted by David Simchi-Levi, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
C14yd3n发布了新的文献求助10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
化学小白发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
蓝天应助ZJHYNL采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
lhy完成签到,获得积分10
6秒前
热情嘉懿发布了新的文献求助10
6秒前
小二郎应助Soyuu采纳,获得10
6秒前
ting完成签到,获得积分10
7秒前
7秒前
火星上香菇完成签到,获得积分10
7秒前
8秒前
husky完成签到,获得积分10
8秒前
8秒前
Ava应助Yiran采纳,获得10
9秒前
麦克完成签到,获得积分10
9秒前
smottom应助cj采纳,获得10
9秒前
10秒前
眯眯眼的松鼠完成签到,获得积分10
10秒前
芊芊墨完成签到,获得积分10
10秒前
风趣若烟发布了新的文献求助20
10秒前
10秒前
浅浅发布了新的文献求助10
11秒前
11秒前
husky发布了新的文献求助10
12秒前
CodeCraft应助undertaker采纳,获得10
12秒前
迷人的天抒应助热情嘉懿采纳,获得10
13秒前
香蕉觅云应助热情嘉懿采纳,获得10
13秒前
13秒前
科研通AI6.1应助lnww采纳,获得10
15秒前
七木发布了新的文献求助10
16秒前
瘦瘦紫文发布了新的文献求助10
16秒前
可爱的函函应助李浩采纳,获得10
18秒前
123完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207