RF-Based Moisture Content Determination in Rice Using Machine Learning Techniques

收发机 无线 含水量 无线传感器网络 计算机科学 随机森林 支持向量机 射频识别 多层感知器 人工神经网络 水分 环境科学 人工智能 遥感 机器学习 工程类 材料科学 电信 地理 复合材料 计算机安全 岩土工程 计算机网络
作者
Noraini Azmi,Latifah Munirah Kamarudin,Ammar Zakaria,David Ndzi,Mohd Hafiz Fazalul Rahiman,Syed Muhammad Mamduh Syed Zakaria,Latifah Mohamed
出处
期刊:Sensors [MDPI AG]
卷期号:21 (5): 1875-1875 被引量:37
标识
DOI:10.3390/s21051875
摘要

Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors’ knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白元风完成签到 ,获得积分10
刚刚
郝田田完成签到,获得积分10
1秒前
合适如音完成签到,获得积分10
1秒前
Wey完成签到 ,获得积分10
1秒前
yuanzhang2030完成签到,获得积分10
1秒前
EunolusZ发布了新的文献求助10
2秒前
jyy应助KongHN采纳,获得10
2秒前
jyy应助KongHN采纳,获得10
2秒前
健忘的迎夏完成签到,获得积分10
2秒前
jyy应助KongHN采纳,获得10
2秒前
科研通AI2S应助KongHN采纳,获得10
2秒前
Ava应助silong采纳,获得10
2秒前
iNk应助玩转非晶采纳,获得10
3秒前
过时的又槐完成签到,获得积分10
3秒前
VDC应助yx采纳,获得30
3秒前
3秒前
zwy完成签到,获得积分10
4秒前
4秒前
欲望被鬼举报gyx求助涉嫌违规
4秒前
123完成签到,获得积分10
4秒前
ljw发布了新的文献求助10
4秒前
5秒前
金阿垚在科研应助yahaha采纳,获得10
5秒前
小冉完成签到,获得积分10
5秒前
深情夏彤完成签到,获得积分10
5秒前
后知后觉发布了新的文献求助10
7秒前
整齐泥猴桃完成签到,获得积分10
7秒前
xiaoxiaomi应助舒涵采纳,获得30
7秒前
情怀应助JERRY采纳,获得10
7秒前
Hungrylunch应助CHL5722采纳,获得20
7秒前
liucong046完成签到,获得积分10
7秒前
7秒前
CodeCraft应助科研cc采纳,获得10
7秒前
8秒前
云里完成签到,获得积分10
8秒前
谦让傲菡完成签到 ,获得积分10
8秒前
小汪完成签到,获得积分10
8秒前
9秒前
qyhl完成签到,获得积分10
9秒前
xwc完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672