RF-Based Moisture Content Determination in Rice Using Machine Learning Techniques

收发机 无线 含水量 无线传感器网络 计算机科学 随机森林 支持向量机 射频识别 多层感知器 人工神经网络 水分 环境科学 人工智能 遥感 机器学习 工程类 材料科学 电信 地理 复合材料 计算机安全 岩土工程 计算机网络
作者
Noraini Azmi,Latifah Munirah Kamarudin,Ammar Zakaria,David Ndzi,Mohd Hafiz Fazalul Rahiman,Syed Muhammad Mamduh Syed Zakaria,Latifah Mohamed
出处
期刊:Sensors [MDPI AG]
卷期号:21 (5): 1875-1875 被引量:37
标识
DOI:10.3390/s21051875
摘要

Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors’ knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁大爷发布了新的文献求助10
刚刚
1秒前
1秒前
李焕弟发布了新的文献求助10
3秒前
小璐sunny发布了新的文献求助10
5秒前
AAAA完成签到,获得积分10
6秒前
6秒前
jiutina完成签到,获得积分10
7秒前
漂亮的鸡发布了新的文献求助10
7秒前
8秒前
愉快的日记本完成签到,获得积分20
8秒前
小白发布了新的文献求助30
10秒前
zdx1022发布了新的文献求助10
10秒前
懦弱的安珊完成签到,获得积分10
12秒前
12秒前
丑橘完成签到,获得积分10
15秒前
15秒前
16秒前
iNk应助科研通管家采纳,获得10
17秒前
淡然平灵应助科研通管家采纳,获得10
17秒前
sunshine应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
木头人应助科研通管家采纳,获得20
17秒前
17秒前
LLL应助123nm采纳,获得10
17秒前
ChatGPT发布了新的文献求助10
18秒前
lesyeuxdexx完成签到 ,获得积分10
20秒前
墩墩护卫军完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助化学先生采纳,获得10
21秒前
KK关闭了KK文献求助
22秒前
qutt完成签到 ,获得积分10
23秒前
果蝇之母发布了新的文献求助10
23秒前
下午四点半完成签到,获得积分20
24秒前
娃哈哈发布了新的文献求助10
25秒前
25秒前
SciGPT应助344061512采纳,获得10
28秒前
逆天了呀完成签到,获得积分10
30秒前
爱静静应助疯狂的大山采纳,获得10
32秒前
Bowman完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352973
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682043
捐赠科研通 2658903
什么是DOI,文献DOI怎么找? 1455990
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884