TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier]
卷期号:190: 107974-107974 被引量:122
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得20
1秒前
orixero应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
拉长的博超完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
4秒前
爆米花应助春江采纳,获得10
5秒前
在水一方应助treelet007采纳,获得10
5秒前
5秒前
5秒前
xuxingxing发布了新的文献求助10
6秒前
6秒前
7秒前
庄艺斌完成签到,获得积分10
7秒前
7秒前
8秒前
传奇3应助微光熠采纳,获得10
8秒前
聪明邪欢完成签到,获得积分10
9秒前
科目三应助misaka采纳,获得10
10秒前
10秒前
神音发布了新的文献求助10
10秒前
左西发布了新的文献求助10
10秒前
吴彦祖发布了新的文献求助10
11秒前
瞌睡虫发布了新的文献求助10
12秒前
烟花应助一一采纳,获得30
12秒前
13秒前
xxfsx应助zhe采纳,获得10
13秒前
77发布了新的文献求助10
13秒前
13秒前
14秒前
无花果应助wanfeng采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431238
求助须知:如何正确求助?哪些是违规求助? 4544308
关于积分的说明 14191949
捐赠科研通 4463001
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414720