TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier]
卷期号:190: 107974-107974 被引量:122
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzh发布了新的文献求助10
刚刚
刚刚
lz应助Rainbow0224采纳,获得20
1秒前
lemon完成签到,获得积分10
1秒前
热心的荣轩完成签到,获得积分10
1秒前
qsh发布了新的文献求助50
1秒前
yyds完成签到,获得积分0
2秒前
英俊的铭应助nong12123采纳,获得10
3秒前
4秒前
5秒前
菠萝完成签到 ,获得积分10
5秒前
lj发布了新的文献求助10
6秒前
852应助高大的曼寒采纳,获得10
6秒前
6秒前
7秒前
灵巧的小笼包完成签到,获得积分10
7秒前
自行车完成签到,获得积分10
9秒前
ding应助老迟到的信封采纳,获得10
9秒前
刘述发布了新的文献求助10
9秒前
9秒前
慕青应助无限的依凝采纳,获得10
10秒前
11秒前
11秒前
荔枝发布了新的文献求助10
12秒前
12秒前
如意冥茗完成签到 ,获得积分10
12秒前
12秒前
躺平的洋仔完成签到,获得积分10
13秒前
田様应助ying采纳,获得10
14秒前
14秒前
合适苗条发布了新的文献求助10
14秒前
Jared应助Singhi采纳,获得10
15秒前
思源应助obsession采纳,获得10
15秒前
墨客发布了新的文献求助10
15秒前
qsh关闭了qsh文献求助
15秒前
阔达的冷霜完成签到,获得积分10
16秒前
16秒前
Hello应助YYH采纳,获得10
16秒前
心斋完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218