TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier BV]
卷期号:190: 107974-107974 被引量:122
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助小桃子采纳,获得10
刚刚
1秒前
李佳完成签到,获得积分20
1秒前
1秒前
Moweikang完成签到,获得积分20
1秒前
2秒前
余与鱼发布了新的文献求助30
2秒前
2秒前
研友_ZzReaZ完成签到,获得积分20
2秒前
堆堆完成签到,获得积分10
2秒前
Imwang完成签到,获得积分10
3秒前
nini发布了新的文献求助10
4秒前
汽水完成签到,获得积分20
4秒前
linguo完成签到,获得积分10
5秒前
5秒前
危机的蜜粉完成签到,获得积分10
6秒前
安详靖巧完成签到,获得积分10
6秒前
小饼干完成签到,获得积分10
7秒前
nini完成签到,获得积分20
7秒前
小蘑菇应助Imwang采纳,获得10
7秒前
7秒前
万能图书馆应助TheYNJ采纳,获得10
7秒前
7秒前
8秒前
8秒前
Negan关注了科研通微信公众号
8秒前
慕青应助眯眯眼的枕头采纳,获得10
8秒前
8秒前
一手抓爆乌云完成签到,获得积分10
8秒前
zf完成签到,获得积分10
8秒前
lgw发布了新的文献求助10
9秒前
AI完成签到 ,获得积分10
9秒前
超级丸子完成签到,获得积分10
9秒前
kiwi发布了新的文献求助10
9秒前
余与鱼完成签到,获得积分10
9秒前
抹茶完成签到 ,获得积分10
10秒前
Yong完成签到,获得积分10
10秒前
我是老大应助Eliauk采纳,获得10
10秒前
11秒前
在水一方应助七七采纳,获得10
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010