TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier]
卷期号:190: 107974-107974 被引量:122
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Vv完成签到,获得积分10
1秒前
emgauemmeo完成签到,获得积分20
1秒前
英姑应助ln采纳,获得10
1秒前
1秒前
领导范儿应助大凯采纳,获得10
1秒前
季子超发布了新的文献求助10
1秒前
Zx_1993应助alicealike采纳,获得10
1秒前
思源应助鱼骨头采纳,获得10
2秒前
羊羊耶完成签到,获得积分10
2秒前
鬼鬼鼠鼠偷番薯完成签到,获得积分10
2秒前
2秒前
3秒前
天空完成签到 ,获得积分10
3秒前
尘扬发布了新的文献求助10
3秒前
4秒前
qqq发布了新的文献求助10
4秒前
李禾和完成签到,获得积分10
5秒前
5秒前
本征值完成签到 ,获得积分10
5秒前
5秒前
薛迎春发布了新的文献求助10
5秒前
爱狗人士Hito完成签到,获得积分10
5秒前
6秒前
可可发布了新的文献求助50
6秒前
maxilily完成签到,获得积分20
6秒前
zhouyane完成签到,获得积分10
6秒前
7秒前
无极微光应助张天泽采纳,获得30
7秒前
7秒前
SunnyYim完成签到,获得积分10
8秒前
坦率书竹发布了新的文献求助10
8秒前
sunny完成签到,获得积分10
8秒前
无花果应助小熏爱学习采纳,获得30
8秒前
烟花应助xwwdcg采纳,获得10
8秒前
delia发布了新的文献求助10
8秒前
Millian完成签到 ,获得积分10
8秒前
城南她似海完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513281
求助须知:如何正确求助?哪些是违规求助? 4607602
关于积分的说明 14505891
捐赠科研通 4543161
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471343
关于科研通互助平台的介绍 1443372