TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier BV]
卷期号:190: 107974-107974 被引量:83
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅浅殇完成签到,获得积分10
3秒前
4秒前
6秒前
滴答发布了新的文献求助10
9秒前
高高的天亦完成签到 ,获得积分10
10秒前
星空完成签到 ,获得积分10
11秒前
文艺的青旋完成签到 ,获得积分10
11秒前
青黛完成签到 ,获得积分10
18秒前
大橙子发布了新的文献求助10
22秒前
领导范儿应助科研通管家采纳,获得10
23秒前
量子星尘发布了新的文献求助10
27秒前
明钟达完成签到 ,获得积分10
35秒前
byyyy完成签到,获得积分10
38秒前
高高的哈密瓜完成签到 ,获得积分10
42秒前
Rondab应助橙汁采纳,获得10
45秒前
读书的时候完成签到,获得积分10
47秒前
颜云尔完成签到,获得积分10
58秒前
孤独雨梅完成签到,获得积分10
1分钟前
woobinhua完成签到 ,获得积分10
1分钟前
雪落你看不见完成签到,获得积分10
1分钟前
十月天秤完成签到,获得积分0
1分钟前
依文完成签到,获得积分20
1分钟前
ymr完成签到 ,获得积分10
1分钟前
哦哦哦完成签到 ,获得积分10
1分钟前
jzmupyj完成签到,获得积分10
1分钟前
大橙子发布了新的文献求助10
1分钟前
xdlongchem完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小梦完成签到,获得积分10
1分钟前
xuhang完成签到,获得积分10
1分钟前
ZSHAN完成签到,获得积分10
1分钟前
美满的机器猫完成签到,获得积分10
1分钟前
王小磊完成签到,获得积分10
1分钟前
谢花花完成签到 ,获得积分10
1分钟前
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
扁舟灬完成签到,获得积分10
1分钟前
Cpp完成签到 ,获得积分10
1分钟前
贤惠的老黑完成签到 ,获得积分10
1分钟前
ame1120发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022