TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier]
卷期号:190: 107974-107974 被引量:83
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
不配.应助科研通管家采纳,获得20
1秒前
Hello应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
调研昵称发布了新的文献求助10
2秒前
斯文败类应助Fjj采纳,获得10
3秒前
李健的小迷弟应助wyy采纳,获得10
3秒前
xu发布了新的文献求助10
4秒前
TangQQ完成签到,获得积分20
5秒前
7秒前
xiaomin发布了新的文献求助10
9秒前
10秒前
NexusExplorer应助hh采纳,获得10
10秒前
11秒前
11秒前
ding应助小田睡不醒采纳,获得10
11秒前
wh雨完成签到,获得积分20
12秒前
buerger发布了新的文献求助10
12秒前
酷波er应助菜菜采纳,获得20
13秒前
ding应助俭朴羊青采纳,获得10
15秒前
jj发布了新的文献求助10
15秒前
Orange应助雨诺采纳,获得10
15秒前
15秒前
迷路桃子完成签到,获得积分10
15秒前
15秒前
yuan完成签到 ,获得积分10
16秒前
想人陪的远锋完成签到,获得积分20
16秒前
17秒前
迷路桃子发布了新的文献求助10
18秒前
19秒前
科研通AI2S应助hhh采纳,获得10
19秒前
CipherSage应助April采纳,获得10
20秒前
科研通AI2S应助xiaomin采纳,获得10
20秒前
20秒前
江浪浪应助azure采纳,获得30
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796557
关于积分的说明 7820486
捐赠科研通 2452923
什么是DOI,文献DOI怎么找? 1305285
科研通“疑难数据库(出版商)”最低求助积分说明 627453
版权声明 601464