TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier]
卷期号:190: 107974-107974 被引量:122
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄子完成签到 ,获得积分10
1秒前
HPP123完成签到 ,获得积分10
2秒前
2秒前
苹果王子6699完成签到 ,获得积分10
2秒前
爱吃蓝莓果完成签到,获得积分10
2秒前
Wzebrafish发布了新的文献求助10
2秒前
厉不厉害你坤哥完成签到,获得积分10
2秒前
机会啊完成签到,获得积分10
2秒前
几几完成签到,获得积分10
2秒前
qawsed完成签到,获得积分10
2秒前
马东完成签到 ,获得积分10
3秒前
顺心行天完成签到 ,获得积分10
4秒前
PetersenGraph完成签到,获得积分10
4秒前
tcf完成签到,获得积分0
4秒前
雨晴完成签到,获得积分10
5秒前
定西完成签到,获得积分10
5秒前
宁幼萱完成签到,获得积分10
6秒前
七七发布了新的文献求助30
6秒前
江上完成签到 ,获得积分10
7秒前
南冥落雨完成签到,获得积分10
7秒前
梁小氓完成签到 ,获得积分10
7秒前
二硫碘化钾完成签到,获得积分10
7秒前
顺心行天关注了科研通微信公众号
7秒前
冷艳的凡阳完成签到,获得积分10
7秒前
7秒前
realtimes完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
tRNA完成签到,获得积分10
9秒前
keyanlv完成签到,获得积分10
9秒前
动听白秋完成签到 ,获得积分10
9秒前
CharlieYue完成签到,获得积分20
10秒前
美满的白昼完成签到 ,获得积分10
10秒前
海心完成签到,获得积分0
11秒前
小葡萄完成签到 ,获得积分10
11秒前
似雨若离完成签到,获得积分10
11秒前
6666666666完成签到 ,获得积分10
11秒前
liuqizong123完成签到,获得积分10
11秒前
opticsLM完成签到,获得积分0
12秒前
NCU-Xzzzz完成签到,获得积分10
12秒前
与可完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735