TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier BV]
卷期号:190: 107974-107974 被引量:83
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘一完成签到 ,获得积分10
1秒前
H-kevin.完成签到,获得积分10
2秒前
kong发布了新的文献求助200
3秒前
山月完成签到,获得积分10
3秒前
yliu完成签到,获得积分10
3秒前
Sun1c7完成签到,获得积分10
4秒前
东郭一斩完成签到,获得积分10
5秒前
Vinaceliu完成签到,获得积分10
6秒前
安安完成签到 ,获得积分10
6秒前
Hightowerliu18完成签到,获得积分10
7秒前
研友_VZG7GZ应助在途中采纳,获得10
7秒前
嘻嘻完成签到 ,获得积分10
7秒前
小知了完成签到,获得积分10
8秒前
LLL完成签到,获得积分10
8秒前
又是一年完成签到,获得积分10
9秒前
可露丽完成签到,获得积分10
9秒前
JusT完成签到,获得积分0
11秒前
qin完成签到,获得积分10
13秒前
13秒前
ash完成签到,获得积分10
14秒前
zhangyuheng完成签到,获得积分10
14秒前
14秒前
bao完成签到,获得积分10
15秒前
黑章鱼保罗完成签到,获得积分10
15秒前
16秒前
16秒前
正直的煎饼完成签到,获得积分10
17秒前
ooo发布了新的文献求助10
18秒前
18秒前
在途中发布了新的文献求助10
18秒前
大胆易巧完成签到 ,获得积分10
19秒前
luo完成签到 ,获得积分10
20秒前
欧皇发布了新的文献求助30
21秒前
合适的寄灵完成签到 ,获得积分10
23秒前
咋取名字发布了新的文献求助10
24秒前
充电宝应助ooo采纳,获得10
24秒前
明亮的青旋完成签到 ,获得积分10
26秒前
MLJ完成签到 ,获得积分10
28秒前
英勇的红酒完成签到 ,获得积分10
28秒前
kong完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513400
关于积分的说明 11167585
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664