TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier BV]
卷期号:190: 107974-107974 被引量:83
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渴望者发布了新的文献求助10
刚刚
唠叨的祥完成签到,获得积分10
1秒前
张磊完成签到,获得积分10
1秒前
大冰发布了新的文献求助10
1秒前
2秒前
momo完成签到 ,获得积分10
3秒前
3秒前
伈X完成签到 ,获得积分10
4秒前
5秒前
三千完成签到,获得积分10
5秒前
微笑的水桃完成签到 ,获得积分10
6秒前
Wen完成签到,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
alltoowell完成签到,获得积分0
8秒前
8秒前
8秒前
科研通AI5应助小豆医生采纳,获得10
8秒前
Sutera发布了新的文献求助10
9秒前
传奇3应助渴望者采纳,获得10
9秒前
9秒前
Jackson关注了科研通微信公众号
9秒前
颜云尔发布了新的文献求助10
10秒前
不圆完成签到,获得积分10
10秒前
树池完成签到,获得积分10
12秒前
害羞的书芹完成签到,获得积分10
13秒前
hyx发布了新的文献求助10
13秒前
杨振完成签到,获得积分10
13秒前
13秒前
英吉利25发布了新的文献求助30
13秒前
终梦发布了新的文献求助10
16秒前
Sutera完成签到,获得积分10
16秒前
西瓜妹完成签到,获得积分10
16秒前
tangsuyun发布了新的文献求助10
17秒前
研友_VZG7GZ应助Zhang采纳,获得10
17秒前
17秒前
空空完成签到 ,获得积分10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913938
求助须知:如何正确求助?哪些是违规求助? 4188483
关于积分的说明 13008099
捐赠科研通 3957217
什么是DOI,文献DOI怎么找? 2169572
邀请新用户注册赠送积分活动 1187961
关于科研通互助平台的介绍 1095442