Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model

流体衰减反转恢复 医学 人工智能 分割 磁共振成像 计算机科学 深度学习 模式识别(心理学) 核医学 Sørensen–骰子系数 体素 图像分割 放射科
作者
Gian Marco Conte,Alexander D. Weston,David C. Vogelsang,Kenneth A. Philbrick,Jason Cai,Maurizio Barbera,Francesco Sanvito,Daniel H. Lachance,Robert B. Jenkins,W. Oliver Tobin,Jeanette E. Eckel‐Passow,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:299 (2): 313-323 被引量:73
标识
DOI:10.1148/radiol.2021203786
摘要

Background Missing MRI sequences represent an obstacle in the development and use of deep learning (DL) models that require multiple inputs. Purpose To determine if synthesizing brain MRI scans using generative adversarial networks (GANs) allows for the use of a DL model for brain lesion segmentation that requires T1-weighted images, postcontrast T1-weighted images, fluid-attenuated inversion recovery (FLAIR) images, and T2-weighted images. Materials and Methods In this retrospective study, brain MRI scans obtained between 2011 and 2019 were collected, and scenarios were simulated in which the T1-weighted images and FLAIR images were missing. Two GANs were trained, validated, and tested using 210 glioblastomas (GBMs) (Multimodal Brain Tumor Image Segmentation Benchmark [BRATS] 2017) to generate T1-weighted images from postcontrast T1-weighted images and FLAIR images from T2-weighted images. The quality of the generated images was evaluated with mean squared error (MSE) and the structural similarity index (SSI). The segmentations obtained with the generated scans were compared with those obtained with the original MRI scans using the dice similarity coefficient (DSC). The GANs were validated on sets of GBMs and central nervous system lymphomas from the authors' institution to assess their generalizability. Statistical analysis was performed using the Mann-Whitney, Friedman, and Dunn tests. Results Two hundred ten GBMs from the BRATS data set and 46 GBMs (mean patient age, 58 years ± 11 [standard deviation]; 27 men [59%] and 19 women [41%]) and 21 central nervous system lymphomas (mean patient age, 67 years ± 13; 12 men [57%] and nine women [43%]) from the authors' institution were evaluated. The median MSE for the generated T1-weighted images ranged from 0.005 to 0.013, and the median MSE for the generated FLAIR images ranged from 0.004 to 0.103. The median SSI ranged from 0.82 to 0.92 for the generated T1-weighted images and from 0.76 to 0.92 for the generated FLAIR images. The median DSCs for the segmentation of the whole lesion, the FLAIR hyperintensities, and the contrast-enhanced areas using the generated scans were 0.82, 0.71, and 0.92, respectively, when replacing both T1-weighted and FLAIR images; 0.84, 0.74, and 0.97 when replacing only the FLAIR images; and 0.97, 0.95, and 0.92 when replacing only the T1-weighted images. Conclusion Brain MRI scans generated using generative adversarial networks can be used as deep learning model inputs in case MRI sequences are missing. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Zhong in this issue. An earlier incorrect version of this article appeared online. This article was corrected on April 12, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一直发布了新的文献求助20
刚刚
刚刚
1秒前
乐乐应助JonyiCheng采纳,获得10
1秒前
无聊先知发布了新的文献求助10
1秒前
医路有你发布了新的文献求助10
2秒前
2秒前
2秒前
drizzling发布了新的文献求助10
3秒前
平淡南松完成签到,获得积分10
4秒前
研友_ED5GK完成签到,获得积分0
4秒前
舒适豌豆发布了新的文献求助10
4秒前
5秒前
生动的雨竹完成签到,获得积分10
5秒前
5秒前
啦啦啦完成签到,获得积分20
6秒前
silentJeremy完成签到,获得积分10
6秒前
6秒前
WNL发布了新的文献求助10
6秒前
7秒前
7秒前
玉yu完成签到 ,获得积分10
7秒前
嗯呢完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
跳跃难胜发布了新的文献求助10
9秒前
大脸妹完成签到,获得积分10
9秒前
愤怒的源智完成签到 ,获得积分10
10秒前
10秒前
10秒前
ganson完成签到 ,获得积分10
10秒前
10秒前
HopeStar发布了新的文献求助10
11秒前
11秒前
bkagyin应助YL采纳,获得10
12秒前
共享精神应助一直采纳,获得10
12秒前
13秒前
无聊先知完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678