Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model

流体衰减反转恢复 医学 人工智能 分割 磁共振成像 计算机科学 深度学习 模式识别(心理学) 核医学 Sørensen–骰子系数 体素 图像分割 放射科
作者
Gian Marco Conte,Alexander D. Weston,David C. Vogelsang,Kenneth A. Philbrick,Jason Cai,Maurizio Barbera,Francesco Sanvito,Daniel H. Lachance,Robert B. Jenkins,W. Oliver Tobin,Jeanette E. Eckel‐Passow,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:299 (2): 313-323 被引量:110
标识
DOI:10.1148/radiol.2021203786
摘要

Background Missing MRI sequences represent an obstacle in the development and use of deep learning (DL) models that require multiple inputs. Purpose To determine if synthesizing brain MRI scans using generative adversarial networks (GANs) allows for the use of a DL model for brain lesion segmentation that requires T1-weighted images, postcontrast T1-weighted images, fluid-attenuated inversion recovery (FLAIR) images, and T2-weighted images. Materials and Methods In this retrospective study, brain MRI scans obtained between 2011 and 2019 were collected, and scenarios were simulated in which the T1-weighted images and FLAIR images were missing. Two GANs were trained, validated, and tested using 210 glioblastomas (GBMs) (Multimodal Brain Tumor Image Segmentation Benchmark [BRATS] 2017) to generate T1-weighted images from postcontrast T1-weighted images and FLAIR images from T2-weighted images. The quality of the generated images was evaluated with mean squared error (MSE) and the structural similarity index (SSI). The segmentations obtained with the generated scans were compared with those obtained with the original MRI scans using the dice similarity coefficient (DSC). The GANs were validated on sets of GBMs and central nervous system lymphomas from the authors' institution to assess their generalizability. Statistical analysis was performed using the Mann-Whitney, Friedman, and Dunn tests. Results Two hundred ten GBMs from the BRATS data set and 46 GBMs (mean patient age, 58 years ± 11 [standard deviation]; 27 men [59%] and 19 women [41%]) and 21 central nervous system lymphomas (mean patient age, 67 years ± 13; 12 men [57%] and nine women [43%]) from the authors' institution were evaluated. The median MSE for the generated T1-weighted images ranged from 0.005 to 0.013, and the median MSE for the generated FLAIR images ranged from 0.004 to 0.103. The median SSI ranged from 0.82 to 0.92 for the generated T1-weighted images and from 0.76 to 0.92 for the generated FLAIR images. The median DSCs for the segmentation of the whole lesion, the FLAIR hyperintensities, and the contrast-enhanced areas using the generated scans were 0.82, 0.71, and 0.92, respectively, when replacing both T1-weighted and FLAIR images; 0.84, 0.74, and 0.97 when replacing only the FLAIR images; and 0.97, 0.95, and 0.92 when replacing only the T1-weighted images. Conclusion Brain MRI scans generated using generative adversarial networks can be used as deep learning model inputs in case MRI sequences are missing. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Zhong in this issue. An earlier incorrect version of this article appeared online. This article was corrected on April 12, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助10
刚刚
完美世界应助iiiiiuy采纳,获得30
刚刚
刚刚
汉堡包应助hhh采纳,获得10
1秒前
粥粥应助蓝雨冰竹采纳,获得10
1秒前
1秒前
曹世纪发布了新的文献求助10
2秒前
Di完成签到,获得积分10
2秒前
2秒前
jopaul完成签到,获得积分10
2秒前
LX1005完成签到,获得积分10
3秒前
yu完成签到,获得积分10
3秒前
Orange应助yao chen采纳,获得10
3秒前
科研通AI6应助嘉嘉琦采纳,获得10
3秒前
勤恳的若风完成签到,获得积分10
4秒前
李家酥铺完成签到,获得积分20
4秒前
远远发布了新的文献求助10
4秒前
kefan_123完成签到,获得积分10
4秒前
4秒前
王思鲁完成签到,获得积分10
5秒前
Lin完成签到,获得积分10
5秒前
胖胖桑完成签到,获得积分20
5秒前
汉堡包应助lvwubin采纳,获得10
6秒前
是亲爱的小王完成签到,获得积分10
6秒前
7秒前
7秒前
虚影完成签到,获得积分10
7秒前
赵若琪发布了新的文献求助30
7秒前
十叶月完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
轻松一曲应助kndr10采纳,获得10
9秒前
1234发布了新的文献求助10
9秒前
情怀应助lanzinuo采纳,获得10
9秒前
llllll完成签到,获得积分10
10秒前
10秒前
11秒前
烟花应助海盐气泡水采纳,获得10
11秒前
11秒前
隐形曼青应助ww采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271