清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model

流体衰减反转恢复 医学 人工智能 分割 磁共振成像 计算机科学 深度学习 模式识别(心理学) 核医学 Sørensen–骰子系数 体素 图像分割 放射科
作者
Gian Marco Conte,Alexander D. Weston,David C. Vogelsang,Kenneth A. Philbrick,Jason Cai,Maurizio Barbera,Francesco Sanvito,Daniel H. Lachance,Robert B. Jenkins,W. Oliver Tobin,Jeanette E. Eckel‐Passow,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:299 (2): 313-323 被引量:81
标识
DOI:10.1148/radiol.2021203786
摘要

Background Missing MRI sequences represent an obstacle in the development and use of deep learning (DL) models that require multiple inputs. Purpose To determine if synthesizing brain MRI scans using generative adversarial networks (GANs) allows for the use of a DL model for brain lesion segmentation that requires T1-weighted images, postcontrast T1-weighted images, fluid-attenuated inversion recovery (FLAIR) images, and T2-weighted images. Materials and Methods In this retrospective study, brain MRI scans obtained between 2011 and 2019 were collected, and scenarios were simulated in which the T1-weighted images and FLAIR images were missing. Two GANs were trained, validated, and tested using 210 glioblastomas (GBMs) (Multimodal Brain Tumor Image Segmentation Benchmark [BRATS] 2017) to generate T1-weighted images from postcontrast T1-weighted images and FLAIR images from T2-weighted images. The quality of the generated images was evaluated with mean squared error (MSE) and the structural similarity index (SSI). The segmentations obtained with the generated scans were compared with those obtained with the original MRI scans using the dice similarity coefficient (DSC). The GANs were validated on sets of GBMs and central nervous system lymphomas from the authors' institution to assess their generalizability. Statistical analysis was performed using the Mann-Whitney, Friedman, and Dunn tests. Results Two hundred ten GBMs from the BRATS data set and 46 GBMs (mean patient age, 58 years ± 11 [standard deviation]; 27 men [59%] and 19 women [41%]) and 21 central nervous system lymphomas (mean patient age, 67 years ± 13; 12 men [57%] and nine women [43%]) from the authors' institution were evaluated. The median MSE for the generated T1-weighted images ranged from 0.005 to 0.013, and the median MSE for the generated FLAIR images ranged from 0.004 to 0.103. The median SSI ranged from 0.82 to 0.92 for the generated T1-weighted images and from 0.76 to 0.92 for the generated FLAIR images. The median DSCs for the segmentation of the whole lesion, the FLAIR hyperintensities, and the contrast-enhanced areas using the generated scans were 0.82, 0.71, and 0.92, respectively, when replacing both T1-weighted and FLAIR images; 0.84, 0.74, and 0.97 when replacing only the FLAIR images; and 0.97, 0.95, and 0.92 when replacing only the T1-weighted images. Conclusion Brain MRI scans generated using generative adversarial networks can be used as deep learning model inputs in case MRI sequences are missing. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Zhong in this issue. An earlier incorrect version of this article appeared online. This article was corrected on April 12, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
川川完成签到 ,获得积分10
23秒前
老迟到的友桃完成签到 ,获得积分10
30秒前
sweetrumors完成签到,获得积分10
33秒前
em0发布了新的文献求助30
40秒前
51秒前
ldtbest0525发布了新的文献求助10
57秒前
酷酷的数据线完成签到,获得积分10
1分钟前
em0完成签到,获得积分10
1分钟前
lx发布了新的文献求助10
1分钟前
专一的忆寒完成签到,获得积分10
2分钟前
lx完成签到 ,获得积分20
2分钟前
傻瓜完成签到 ,获得积分10
2分钟前
哈哈完成签到 ,获得积分10
2分钟前
sissiarno完成签到,获得积分0
2分钟前
淡淡菠萝完成签到 ,获得积分10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
科研通AI5应助嘟嘟哒采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
白天亮完成签到,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
小朱马完成签到,获得积分10
5分钟前
5分钟前
小朱马发布了新的文献求助10
5分钟前
万能图书馆应助cc采纳,获得10
5分钟前
arniu2008完成签到,获得积分10
5分钟前
5分钟前
cc发布了新的文献求助10
6分钟前
火星上惜天完成签到 ,获得积分10
6分钟前
帅气的安柏完成签到,获得积分10
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
观众完成签到,获得积分10
7分钟前
yu完成签到 ,获得积分10
7分钟前
Ava应助lx采纳,获得10
8分钟前
浮游应助科研通管家采纳,获得10
9分钟前
思源应助科研通管家采纳,获得10
9分钟前
Cumin完成签到 ,获得积分10
9分钟前
豆丁小猫完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255132
求助须知:如何正确求助?哪些是违规求助? 4417795
关于积分的说明 13751714
捐赠科研通 4290711
什么是DOI,文献DOI怎么找? 2354326
邀请新用户注册赠送积分活动 1350941
关于科研通互助平台的介绍 1311305