清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model

流体衰减反转恢复 医学 人工智能 分割 磁共振成像 计算机科学 深度学习 模式识别(心理学) 核医学 Sørensen–骰子系数 体素 图像分割 放射科
作者
Gian Marco Conte,Alexander D. Weston,David C. Vogelsang,Kenneth A. Philbrick,Jason Cai,Maurizio Barbera,Francesco Sanvito,Daniel H. Lachance,Robert B. Jenkins,W. Oliver Tobin,Jeanette E. Eckel‐Passow,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:299 (2): 313-323 被引量:73
标识
DOI:10.1148/radiol.2021203786
摘要

Background Missing MRI sequences represent an obstacle in the development and use of deep learning (DL) models that require multiple inputs. Purpose To determine if synthesizing brain MRI scans using generative adversarial networks (GANs) allows for the use of a DL model for brain lesion segmentation that requires T1-weighted images, postcontrast T1-weighted images, fluid-attenuated inversion recovery (FLAIR) images, and T2-weighted images. Materials and Methods In this retrospective study, brain MRI scans obtained between 2011 and 2019 were collected, and scenarios were simulated in which the T1-weighted images and FLAIR images were missing. Two GANs were trained, validated, and tested using 210 glioblastomas (GBMs) (Multimodal Brain Tumor Image Segmentation Benchmark [BRATS] 2017) to generate T1-weighted images from postcontrast T1-weighted images and FLAIR images from T2-weighted images. The quality of the generated images was evaluated with mean squared error (MSE) and the structural similarity index (SSI). The segmentations obtained with the generated scans were compared with those obtained with the original MRI scans using the dice similarity coefficient (DSC). The GANs were validated on sets of GBMs and central nervous system lymphomas from the authors' institution to assess their generalizability. Statistical analysis was performed using the Mann-Whitney, Friedman, and Dunn tests. Results Two hundred ten GBMs from the BRATS data set and 46 GBMs (mean patient age, 58 years ± 11 [standard deviation]; 27 men [59%] and 19 women [41%]) and 21 central nervous system lymphomas (mean patient age, 67 years ± 13; 12 men [57%] and nine women [43%]) from the authors' institution were evaluated. The median MSE for the generated T1-weighted images ranged from 0.005 to 0.013, and the median MSE for the generated FLAIR images ranged from 0.004 to 0.103. The median SSI ranged from 0.82 to 0.92 for the generated T1-weighted images and from 0.76 to 0.92 for the generated FLAIR images. The median DSCs for the segmentation of the whole lesion, the FLAIR hyperintensities, and the contrast-enhanced areas using the generated scans were 0.82, 0.71, and 0.92, respectively, when replacing both T1-weighted and FLAIR images; 0.84, 0.74, and 0.97 when replacing only the FLAIR images; and 0.97, 0.95, and 0.92 when replacing only the T1-weighted images. Conclusion Brain MRI scans generated using generative adversarial networks can be used as deep learning model inputs in case MRI sequences are missing. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Zhong in this issue. An earlier incorrect version of this article appeared online. This article was corrected on April 12, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanxinge完成签到 ,获得积分10
刚刚
momi完成签到 ,获得积分10
16秒前
冬去春来完成签到 ,获得积分10
32秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
willlee完成签到 ,获得积分10
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
1分钟前
高兴凝安发布了新的文献求助10
1分钟前
asdfqaz完成签到,获得积分10
2分钟前
隐形曼青应助高兴凝安采纳,获得10
2分钟前
2分钟前
asdfqaz发布了新的文献求助50
2分钟前
2分钟前
风中鲂发布了新的文献求助10
2分钟前
3分钟前
hugeyoung发布了新的文献求助10
3分钟前
科研通AI2S应助hugeyoung采纳,获得10
4分钟前
pzk完成签到,获得积分10
4分钟前
Omni发布了新的文献求助10
4分钟前
pzk关闭了pzk文献求助
4分钟前
gggyyy完成签到,获得积分10
4分钟前
gggyyy发布了新的文献求助10
4分钟前
pzk发布了新的文献求助10
4分钟前
小强完成签到 ,获得积分10
4分钟前
5分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
5分钟前
6分钟前
小张完成签到 ,获得积分10
6分钟前
rengar完成签到,获得积分10
6分钟前
风中鲂完成签到,获得积分10
6分钟前
江三村完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
小马甲应助科研通管家采纳,获得10
7分钟前
美丽依波完成签到 ,获得积分10
7分钟前
7分钟前
kk应助pzk采纳,获得10
8分钟前
如意的馒头完成签到 ,获得积分10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356882
求助须知:如何正确求助?哪些是违规求助? 2980468
关于积分的说明 8694464
捐赠科研通 2662169
什么是DOI,文献DOI怎么找? 1457626
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665767