Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model

流体衰减反转恢复 医学 人工智能 分割 磁共振成像 计算机科学 深度学习 模式识别(心理学) 核医学 Sørensen–骰子系数 体素 图像分割 放射科
作者
Gian Marco Conte,Alexander D. Weston,David C. Vogelsang,Kenneth A. Philbrick,Jason Cai,Maurizio Barbera,Francesco Sanvito,Daniel H. Lachance,Robert B. Jenkins,W. Oliver Tobin,Jeanette E. Eckel‐Passow,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:299 (2): 313-323 被引量:81
标识
DOI:10.1148/radiol.2021203786
摘要

Background Missing MRI sequences represent an obstacle in the development and use of deep learning (DL) models that require multiple inputs. Purpose To determine if synthesizing brain MRI scans using generative adversarial networks (GANs) allows for the use of a DL model for brain lesion segmentation that requires T1-weighted images, postcontrast T1-weighted images, fluid-attenuated inversion recovery (FLAIR) images, and T2-weighted images. Materials and Methods In this retrospective study, brain MRI scans obtained between 2011 and 2019 were collected, and scenarios were simulated in which the T1-weighted images and FLAIR images were missing. Two GANs were trained, validated, and tested using 210 glioblastomas (GBMs) (Multimodal Brain Tumor Image Segmentation Benchmark [BRATS] 2017) to generate T1-weighted images from postcontrast T1-weighted images and FLAIR images from T2-weighted images. The quality of the generated images was evaluated with mean squared error (MSE) and the structural similarity index (SSI). The segmentations obtained with the generated scans were compared with those obtained with the original MRI scans using the dice similarity coefficient (DSC). The GANs were validated on sets of GBMs and central nervous system lymphomas from the authors' institution to assess their generalizability. Statistical analysis was performed using the Mann-Whitney, Friedman, and Dunn tests. Results Two hundred ten GBMs from the BRATS data set and 46 GBMs (mean patient age, 58 years ± 11 [standard deviation]; 27 men [59%] and 19 women [41%]) and 21 central nervous system lymphomas (mean patient age, 67 years ± 13; 12 men [57%] and nine women [43%]) from the authors' institution were evaluated. The median MSE for the generated T1-weighted images ranged from 0.005 to 0.013, and the median MSE for the generated FLAIR images ranged from 0.004 to 0.103. The median SSI ranged from 0.82 to 0.92 for the generated T1-weighted images and from 0.76 to 0.92 for the generated FLAIR images. The median DSCs for the segmentation of the whole lesion, the FLAIR hyperintensities, and the contrast-enhanced areas using the generated scans were 0.82, 0.71, and 0.92, respectively, when replacing both T1-weighted and FLAIR images; 0.84, 0.74, and 0.97 when replacing only the FLAIR images; and 0.97, 0.95, and 0.92 when replacing only the T1-weighted images. Conclusion Brain MRI scans generated using generative adversarial networks can be used as deep learning model inputs in case MRI sequences are missing. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Zhong in this issue. An earlier incorrect version of this article appeared online. This article was corrected on April 12, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andyhacker完成签到,获得积分10
1秒前
小焦儿完成签到,获得积分10
6秒前
塔莉娅完成签到,获得积分10
7秒前
9秒前
烟花应助budingman采纳,获得20
10秒前
10秒前
11秒前
称心凡霜完成签到,获得积分10
12秒前
xiaoyao发布了新的文献求助30
13秒前
13秒前
13秒前
15秒前
Wrasul完成签到 ,获得积分10
15秒前
QYF发布了新的文献求助10
15秒前
一米八关注了科研通微信公众号
15秒前
saisai发布了新的文献求助20
16秒前
17秒前
小蘑菇应助博学为农采纳,获得10
19秒前
19秒前
天天快乐应助三日采纳,获得10
22秒前
田様应助北彧采纳,获得10
22秒前
欣喜蘑菇发布了新的文献求助10
23秒前
呵呵发布了新的文献求助10
23秒前
24秒前
小田完成签到 ,获得积分10
24秒前
cherry bomb完成签到,获得积分10
28秒前
斯文败类应助ZLX采纳,获得10
29秒前
安详的曲奇完成签到,获得积分10
30秒前
意昂发布了新的文献求助10
30秒前
冷傲凝琴发布了新的文献求助10
31秒前
wanci应助saisai采纳,获得20
33秒前
34秒前
34秒前
领导范儿应助刘小雨采纳,获得10
34秒前
一米八发布了新的文献求助10
36秒前
居选金发布了新的文献求助10
37秒前
玊尔完成签到,获得积分20
39秒前
40秒前
41秒前
hoongyan完成签到 ,获得积分10
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382