亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatial Resolved Surface Ozone with Urban and Rural Differentiation during 1990–2019: A Space–Time Bayesian Neural Network Downscaler

环境科学 人口 均方误差 外推法 地理 大气科学 气象学 统计 人口学 数学 地质学 社会学
作者
Zhe Sun,Youngsub Matthew Shin,Mingtao Xia,Shengxian Ke,Michelle Wan,Le Yuan,Yuming Guo,A. T. Archibald
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (11): 7337-7349 被引量:51
标识
DOI:10.1021/acs.est.1c04797
摘要

Long-term exposure to ambient ozone (O3) can lead to a series of chronic diseases and associated premature deaths, and thus population-level environmental health studies hanker after the high-resolution surface O3 concentration database. In response to this demand, we innovatively construct a space–time Bayesian neural network parametric regressor to fuse TOAR historical observations, CMIP6 multimodel simulation ensemble, population distributions, land cover properties, and emission inventories altogether and downscale to 10 km × 10 km spatial resolution with high methodological reliability (R2 = 0.89–0.97, RMSE = 1.97–3.42 ppbV), fair prediction accuracy (R2 = 0.69–0.77, RMSE = 5.63–7.97 ppbV), and commendable spatiotemporal extrapolation capabilities (R2 = 0.62–0.76, RMSE = 5.38–11.7 ppbV). Based on our predictions in 8-h maximum daily average metric, the rural-site surface O3 are 15.1±7.4 ppbV higher than urban globally averaged across 30 historical years during 1990–2019, with developing countries being of the most evident differences. The globe-wide urban surface O3 are climbing by 1.9±2.3 ppbV per decade, except for the decreasing trends in eastern United States. On the other hand, the global rural surface O3 tend to be relatively stable, except for the rising tendencies in China and India. Using CMIP6 model simulations directly without urban–rural differentiation will lead to underestimations of population O3 exposure by 2.0±0.8 ppbV averaged over each historical year. Our original Bayesian neural network framework contributes to the deep-learning-driven environmental studies methodologically by providing a brand-new feasible way to realize data fusion and downscaling, which maintains high interpretability by conforming to the principles of spatial statistics without compromising the prediction accuracy. Moreover, the 30-year highly spatial resolved monthly surface O3 database with multiple metrics fills in the literature gap for long-term surface O3 exposure tracing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学丫完成签到,获得积分20
8秒前
11秒前
13秒前
忧虑的翠桃完成签到 ,获得积分10
14秒前
Jiawen发布了新的文献求助10
17秒前
LiAng发布了新的文献求助10
19秒前
橘子发布了新的文献求助10
22秒前
Jiawen完成签到,获得积分10
23秒前
40秒前
hey完成签到,获得积分10
45秒前
46秒前
46秒前
qwq发布了新的文献求助10
50秒前
望远Arena完成签到,获得积分10
51秒前
zhangqin发布了新的文献求助10
58秒前
一一完成签到,获得积分20
1分钟前
在水一方应助莫里亚蒂采纳,获得10
1分钟前
1分钟前
1分钟前
莫里亚蒂完成签到,获得积分20
1分钟前
1分钟前
莫里亚蒂发布了新的文献求助10
1分钟前
洁白的故人完成签到 ,获得积分10
1分钟前
郭志康发布了新的文献求助10
1分钟前
1分钟前
lzw发布了新的文献求助10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
西北完成签到,获得积分10
1分钟前
1分钟前
西北发布了新的文献求助10
1分钟前
lzw完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
幽壑之潜蛟应助gppdwyyx采纳,获得10
1分钟前
yzhilson完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387