Optimal Trade‐in Return Policies: Is it Wise to be Generous?

程式化事实 产品(数学) 业务 商业政策 经济 国际贸易 几何学 数学 宏观经济学
作者
Kaiying Cao,Tsan‐Ming Choi
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (3): 1309-1331 被引量:80
标识
DOI:10.1111/poms.13612
摘要

To retain old customers and promote sales, firms offer trade‐in programs in which consumers bring in an old product and receive a trade‐in rebate when buying a new one. However, after buying the new product, the consumer who has traded in (the “trade‐in consumer”) may return the new product and claim a refund for it if she/he is not satisfied with it. In this situation, under a full‐trade‐in‐return (FTR) policy, trade‐in consumers receive a generous refund that includes a trade‐in‐rebate for them to redeem if they purchase again in future. Alternatively, some firms have a partial‐trade‐in‐return (PTR) policy under which trade‐in consumers who return a newly purchased product only receive a refund for the amount of money they paid (without including the trade‐in‐rebate). In this study, we build stylized analytical models to explore the optimal choice of a trade‐in‐return policy. We find that there is no difference to the firm between an FTR and a PTR policy when no trade‐in consumers keep unsatisfactory new products. In the case of a relatively medium residual value of the used product, FTR is always the better choice for the firm. When some trade‐in consumers keep unsatisfactory new products, we show that FTR (PTR) is the better choice when the used product's durability is sufficiently low (high). We also show that the firm may not reduce its trade‐in rebate when the “average new product satisfaction rate” of trade‐in consumers increases. In the extended models, we find that, the firm is more likely to prefer PTR to FTR under the online–offline dual‐channel retailing mode, but tends to prefer FTR to PTR when there is a competitive secondhand market, and should make the same optimal trade‐in return policy when there are two selling periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞿寒发布了新的文献求助30
刚刚
辉HUI发布了新的文献求助10
2秒前
老实莫言完成签到,获得积分10
2秒前
科研通AI5应助似鱼采纳,获得10
3秒前
阳阳完成签到,获得积分10
4秒前
4秒前
沉默靳完成签到,获得积分10
4秒前
吼吼哈哈发布了新的文献求助10
5秒前
李爱国应助烂漫夜梅采纳,获得10
5秒前
英姑应助Hollen采纳,获得50
6秒前
随便起个名完成签到,获得积分10
6秒前
ff发布了新的文献求助10
7秒前
7秒前
顾海东完成签到,获得积分10
7秒前
小次之山发布了新的文献求助10
7秒前
艺凯完成签到,获得积分10
9秒前
慕青应助kunkun采纳,获得10
10秒前
11秒前
健忘傲柏完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
16秒前
领导范儿应助猫与咖啡采纳,获得10
16秒前
竹筏过海应助bingchem采纳,获得30
16秒前
17秒前
yangya发布了新的文献求助100
18秒前
19秒前
忘久完成签到,获得积分10
19秒前
20秒前
鱿鱼炒黄瓜完成签到,获得积分10
21秒前
CipherSage应助旧辞采纳,获得10
22秒前
zp发布了新的文献求助10
22秒前
似鱼发布了新的文献求助10
22秒前
22秒前
科研通AI5应助研究牲采纳,获得10
23秒前
wanci应助hob采纳,获得10
25秒前
25秒前
8R60d8应助随风采纳,获得10
26秒前
amber发布了新的文献求助10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427