Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density

催化作用 磷化物 分解水 碱性水电解 电催化剂 制氢 氢氧化物 电解质 材料科学 化学工程 电解 电解水 纳米线 氢氧化钴 碱度 无机化学 化学 纳米技术 冶金 电极 电化学 物理化学 光催化 生物化学 有机化学 工程类
作者
Fuli Wang,Yanan Zhou,Jing‐Yi Lv,Bin Dong,Xinyu Zhang,Wen‐Li Yu,Jing‐Qi Chi,Zexing Wu,Lei Wang,Yong‐Ming Chai
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:47 (2): 1016-1025 被引量:19
标识
DOI:10.1016/j.ijhydene.2021.10.117
摘要

The development of hydrogen evolution activity (HER) electrocatalyst that can run durably and efficiently under the large current density is of special significance but still challengeable for the massive production of hydrogen. Herein, a CoP/Ni(OH)2 nanowire catalysts grown on Co foam (CF) with a three-dimensional heterojunction structure has been successfully prepared by electrodepositing nickel hydroxide on the surface of cobalt phosphide. The prepared CoP/Ni(OH)2–15 min sample reveals a superior HER activity and stability. It merely requires ultralow overpotentials of 108 and 175 mV to 100 and 500 mA cm−2, respectively. In addition, the long-term stability test shows that the catalyst (CoP/Ni(OH)2–15 min) can operate stably for at least 70 h at 400 mA cm−2. Utilizing NiFe-LDH/IF with high OER activity, the NiFe-LDH/IF || CoP/Ni(OH)2–15 min catalyst system possesses the same outstanding performance for overall water splitting (OWS), which can accomplish ≈ 500 mA cm−2 at 1.74 V in 1 M KOH electrolyte. Moreover, the NiFe-LDH/IF || CoP/Ni(OH)2–15 min couple can work for more than 80 h at 500 mA cm−2, indicating its a great prospect in the area of electrolysis water. Such excellent catalytic performance is mainly attributed to the armor effect of Ni(OH)2, which can not only promote the rapid decomposition of water molecules, but also prevent the loss of phosphorus and enhance the synergistic effect of CoP and Ni(OH)2. This work can offer a significant reference for the design with high-performance and durable transition metal phosphide electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助111采纳,获得10
1秒前
xiaoding发布了新的文献求助30
1秒前
Galaxee完成签到 ,获得积分10
1秒前
1秒前
背后的又蓝完成签到,获得积分20
2秒前
科研通AI5应助飞飞采纳,获得10
2秒前
2秒前
VDC应助狗五采纳,获得30
2秒前
在水一方发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
小白菜完成签到 ,获得积分10
4秒前
emmm发布了新的文献求助10
5秒前
研友_VZGMzL完成签到,获得积分10
5秒前
亚麻沙金发布了新的文献求助10
6秒前
ww发布了新的文献求助10
7秒前
7秒前
7秒前
zhusealin完成签到,获得积分10
7秒前
7秒前
esyncoms发布了新的文献求助10
7秒前
7秒前
李健的小迷弟应助满意芯采纳,获得10
7秒前
木木发布了新的文献求助10
8秒前
彭于晏应助nav采纳,获得10
8秒前
英俊的铭应助zwtaihua1025采纳,获得10
8秒前
9秒前
9秒前
LK发布了新的文献求助10
9秒前
10秒前
10秒前
luna完成签到,获得积分10
10秒前
景胜杰发布了新的文献求助10
11秒前
小二郎应助在水一方采纳,获得10
11秒前
11秒前
飘雪发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212